The Impact of Lead

The greatest environmental downside towards utilizing lead for lead acid batteries is the waste produced in processing lead and the damage created in the mismanagement of lead that is being recycled (as lead still is a toxic material to deal with). Our greatest priority moving forward with lead should be to utilize research efforts into producing cleaner processes for handling lead, and researching stricter procedures for the recycling of lead.


It’s no stretch to say that electricity powers our world. A wide variety of appliances serve critical purposes in ensuring the health, efficiency, and security of the human race. From automobiles to medical appliances, it is no stretch to claim that batteries serve a critical role in society to power crucial portable appliances.

As discussed in my previous blog post, Lead Acid batteries firmly stand as the industry standard to power our heaviest appliances, mainly due in part to it’s economic advantage over alternatives on the market. However, there do exist alternatives. From older batteries, such as Nickel Cadmium, to more modern batteries, such as Lithium-ion, Lead Acid batteries fall short in smaller devices due to the energy and weight efficiency exhibited by  the newer Lithium Ion battery.

NiCd NiMH Lead Acid Li-ion Li-ion polymer Reusable
Gravimetric Energy Density(Wh/kg) 45-80 60-120 30-50 110-160 100-130 80 (initial)
Internal Resistance

View original post 625 more words


Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )


Connecting to %s