Cane Straw & Bagasse to Energy

If surplus biomass is required to produce more energy to achieve economical feasibility of investing in more efficient industrial equipment, sugarcane straw is an alternative. With an average yielding of 14 tonnes of dry biomass per hectare, one tonne of this feedstock produces around 700 kWh of energy (depends on industry technology).


Selective Cane Residue Removal

Sugarcane crop residue left on the field after mechanical harvesting is composed by around 80% of dry leaves, 18% of green leaves and 2% cane tops (dry basis). These three components have different composition and this represents an opportunity to manage the biomass collection towards both field and industrial benefits.

Agricultural Farm Management in India

Prabumj's Blog

The main objective of technology-based agriculture must be to reduce input cost while increasing the yield, particularly for small and marginal farmers. Agriculture scientists would like farmers to realise that reduction of chemical-based fertilizers and pesticides can benefit both man and earth over the long run. Farmers in particular would stand to gain as a major portion of their money is spent on buying these chemicals. The focus, they believe, must shift to educating farmers on the value of waste matter being generated in both their fields and homes, and availability of technologies to convert waste into wealth. Their farm economics will definitely improve if they realise and adopt this. It is precisely on these lines that scientists at the Myrada Krishi Vigyan Kendra at Gobichettipalayam, in Erode, Tamil Nadu have beenworking for the past several years in implementing a project called IFD (Integrated farm development model). Also called as…

View original post 557 more words

Hemp as Biomass Energy Resourc

The Inspired Observer

Energy. We all use energy, and NEED it. There are many forms of energy. Some are clean and healthy for the environment, some are not.

There are 2 sources of energy – non-renewable and renewable.

Non-renewable sources of energy include fossil fuels and uranium (which is not a fossil fuel). Combustive fossil fuels emit dangerous elements into the air and environment – sulfur dioxide and carbon monoxide. These are products that are the cause of pollution and acid rain.

Renewable sources of energy include hydropower, geothermal, solar, and biomass. These create less pollution and are cleaner to process.

Let’s look at biomass. Biomass, renewable energy, is biological material from living or recently living organisms. It can be used directly or converted to create other forms of energy. Examples of biomass are wood, crops, food waste, vegetable oils, and hemp.

In the 1900s Henry Ford, and others, realized the importance of…

View original post 450 more words

Rice Husk Power Heralding Change in India

Stephanie Hanson

Originally published in ecomagination:

In Bihar, one of the poorest states in India, 85 percent of people are not connected to the electricity grid. Households use kerosene lamps when they can afford it, and businesses use expensive and dirty diesel generators.

Some view this “energy poverty” as a development problem. Others view it as an environmental problem. The founders of Bihar-based Husk Power Systems view it as an opportunity to build a social enterprise.

The company realized that one waste product in Bihar—rice husks—could be used to power a small biomass gasifier. Along with rice husks, they also use mustard stems, corncobs, grasses, and other agricultural residue. After five months of R&D, they developed a system that could produce 32 kilowatts of power by burning 50 kilograms of rice husk per hour. In the last four years, they’ve installed over 80 biomass mini-plants across Bihar, bringing power to more…

View original post 776 more words

Thailand’s Biomass Energy Scenario

© Guerito 2005

Thailand’s annual energy consumption has risen sharply during the past decade and will continue its upward trend in the years to come. While energy demand has risen sharply, domestic sources of supply are limited, thus forcing a significant reliance on imports. To face this increasing demand, Thailand needs to produce more energy from its own renewable resources, particularly biomass wastes derived from agro-industry, such as bagasse, rice husk, wood chips, livestock and municipal wastes.

In 2005, total installed power capacity in Thailand was 26,430 MW. Renewable energy accounted for about 2 percent of the total installed capacity. In 2007, Thailand had about 777 MW of electricity from renewable energy that was sold to the grid. Several studies have projected that biomass wastes can cover up to 15 % of the energy demand in Thailand (Thailand-Danish Country Programme for Environmental Assistance 1998-2001, Ministry of Environment and Energy, 2000). These estimations are primarily made from biomass waste from the extraction part of agricultural activities, and for large scale agricultural processing of crops etc. – as for instance saw and palm oil mills – and do not include biomass wastes from SMEs in Thailand. Thus, the energy potential of biomass waste can be much larger if these resources are included. The major biomass resources in Thailand include the following:

  • Woody biomass residues from forest plantations
  • Agricultural residues (rice husk, bagasse, corn cobs, etc.)
  • Wood residues from wood and furniture industries    (bark, sawdust, etc.)
  • Biomass for ethanol production (cassava, sugar cane, etc.)
  • Biomass for biodiesel production (palm oil, jatropha oil, etc.)
  • Industrial wastewater from agro-industry
  • Livestock manure
  • Municipal solid wastes and sewage

Thailand’s vast biomass potential has been partially exploited through the use of traditional as well as more advanced conversion technologies for biogas, power generation, and biofuels. Rice, sugar, palm oil, and wood-related industries are the major potential biomass energy sources. The country has a fairly large biomass resource base of about 60 million tons generated each year that could be utilized for energy purposes, such as rice, sugarcane, rubber sheets, palm oil and cassava. Biomass has been a primary source of energy for many years, used for domestic heating and industrial cogeneration. For example, paddy husks are burned to produce steam for turbine operation in rice mills; bagasse and palm residues are used to produce steam and electricity for on-site manufacturing process; and rubber wood chips are burned to produce hot air for rubber wood seasoning.

In addition to biomass residues, wastewater containing organic matters from livestock farms and industries has increasingly been used as a potential source of biomass energy. Thailand’s primary biogas sources are pig farms and residues from food processing. The production potential of biogas from industrial wastewater from palm oil industries, tapioca starch industries, food processing industries, and slaughter industries is also significant. The energy-recovery and environmental benefits that the KWTE waste to energy project has already delivered is attracting keen interest from a wide range of food processing industries around the world.

Enhanced by Zemanta


English: Freshly harvested worm castings Categ...

Vermicomposting is a type of composting in which certain species of earthworms are used to enhance the process of organic waste conversion and produce a better end-product. Vermicomposting is a mesophilic process utilizing microorganisms and earthworms. Earthworms feeds the organic waste materials and passes it through their digestive system and gives out in a granular form (cocoons) which is known as vermicompost. Like regular compost, vermicompost also benefits the environment by reducing the need for chemical fertilizers and decreasing the amount of waste going to landfills/dumpsites.

Vermicompost is primarily earthworm excrement, called castings, which can improve biological, chemical, and physical properties of the soil. The chemical secretions in the earthworm’s digestive tract help break down soil and organic matter, so the castings contain more nutrients that are immediately available to plants.

Earthworms consume various organic wastes and reduce the volume by 40–60 percent. Each earthworm weighs about 0.5 to 0.6 gram, eats waste equivalent to its body weight and produces cast equivalent to about 50 percent of the waste it consumes in a day. The moisture content of castings ranges between 32 and 66 percent and the pH is around 7.0. The worm castings contain higher percentage (almost twice) of both macro and micronutrients than the garden compost. About 2-3 kg of earthworms is required for 1000 kg of biomass, whereas about 1100 number earthworms are required for 1 m2 area.

There are nearly 3600 types of earthworms and they are mainly divided into two types: (1) burrowing; and (2) non-burrowing. Red earthworm species like Eisenia foetida and


 are most efficient in compost making. The non-burrowing earthworms eat 10 percent soil and 90 percent organic waste materials; these convert the organic waste into vermicompost faster than the burrowing earthworms. They can tolerate temperatures ranging from 0 to 40°C but the regeneration capacity is more at 25 to 30°C and 40–45% moisture level in the pile. The burrowing types of earthworms come onto the soil surface only at night. These make holes in the soil up to a depth of 3.5 m and produce 5.6 kg casts by ingesting 90 percent soil and 10 percent organic waste.

A wide range of agricultural residues, all dry wastes, for example, straw, husk, dry leaves of crops and trees, stalks, vegetable wastes, weeds etc can be converted into vermicompost. In addition, animal manures, dairy and poultry wastes, food industry wastes, municipal solid wastes, biogas sludge and bagasse from sugarcane factories also serve as good raw materials for vermicomposting.

Enhanced by Zemanta

Ethanol Production via Biochemical Route

Ethanol from lignocellulosic biomass is produced mainly via biochemical routes. The three major steps involved are pretreatment, enzymatic hydrolysis, and fermentation as shown in Figure. Biomass is pretreated to improve the accessibility of enzymes. After pretreatment, biomass undergoes enzymatic hydrolysis for conversion of polysaccharides into monomer sugars, such as glucose and xylose. Subsequently, sugars are fermented to ethanol by the use of different microorganisms.

Pretreated biomass can directly be converted to ethanol by using the process called simultaneous saccharification and cofermentation (SSCF). Pretreatment is a critical step which enhances the enzymatic hydrolysis of biomass. Basically, it alters the physical and chemical properties of biomass and improves the enzyme access and effectiveness which may also lead to a change in crystallinity and degree of polymerization of cellulose. The internal surface area and pore volume of pretreated biomass are increased which facilitates substantial improvement in accessibility of enzymes. The process also helps in enhancing the rate and yield of monomeric sugars during enzymatic hydrolysis steps.

Pretreatment methods can be broadly classified into four groups – physical, chemical, physio-chemical and biological. Physical pretreatment processes employ the mechanical comminution or irradiation processes to change only the physical characteristics of biomass. The physio-chemical process utilizes steam or steam and gases, like SO2 and CO2. The chemical processes employs acids (H2SO4, HCl, organic acids etc) or alkalis (NaOH, Na2CO3, Ca(OH)2, NH3 etc). The acid treatment typically shows the selectivity towards hydrolyzing the hemicelluloses components, whereas alkalis have better selectivity for the lignin. The fractionation of biomass components after such processes help in improving the enzymes accessibility which is also important to the efficient utilization of enzymes.

The pretreated biomass is subjected to enzymatic hydrolysis using cellulase enzymes to convert the cellulose to fermentable sugars. Cellulase refers to a class of enzymes produced chiefly by fungi and bacteria which catalyzes the hydrolysis of cellulose by attacking the glycosidic linkages. Cellulase is mixture of mainly three different functional protein groups: exo-glucanase (Exo-G), endo-glucanase(Endo-G) and β-glucosidase (β-G). The functional proteins work synergistically in hydrolyzing the cellulose into the glucose. These sugars are further fermented using microorganism and are converted to ethanol. The microorganisms are selected based on their efficiency for ethanol productivity and higher product and inhibitors tolerance. Yeast Saccharomyces cerevisiae is used commercially to produce the ethanol from starch and sucrose.

Escherichia coli strain has also been developed recently for ethanol production by the first successful application of metabolic engineering. E. coli can consume variety of sugars and does not require the complex growth media but has very narrow operable range of pH. E. coli has higher optimal temperature than other known strains of bacteria.

The major cost components in bioethanol production from lignocellulosic biomass are the pretreatment and the enzymatic hydrolysis steps. In fact, these two process are someway interrelated too where an efficient pretreatment strategy can save substantial enzyme consumption. Pretreatment step can also affect the cost of other operations such as size reduction prior to pretreatment. Therefore, optimization of these two important steps, which collectively contributes about 70% of the total processing cost, are the major challenges in the commercialization of bioethanol from 2nd generation feedstock.

Enzyme cost is the prime concern in full scale commercialization. The trend in enzyme cost is encouraging because of enormous research focus in this area and the cost is expected to go downward in future, which will make bioethanol an attractive option considering the benefits derived its lower greenhouse gas emissions and the empowerment of rural economy.

Enhanced by Zemanta

Biomass Cogeneration

GE H series power generation gas turbine. This...

Biomass conversion technologies transform a variety of wastes into heat, electricity and biofuels by employing a host of strategies. Conversion routes are generally thermochemical or biochemical, but may also include chemical and physical. Physical methods are frequently employed for size reduction of biomass wastes but may also be used to aggregate and densify small particles into pellets or briquettes.

A wide range of conversion technologies are under continuous development to produce biomass energy carriers for both small and large scale energy applications. Combustion is the most widely used technology that releases heat and can also generate power by using boilers and steam turbines. The simplest way is to burn the biomass in a furnace, exploiting the heat generated to produce steam in a boiler, which is then used to drive a steam turbine. At the smaller scale, biomass pellet and briquette combustion systems mainly used for domestic and industrial heat supply are experiencing growing demand in some countries due to their convenience.

Advanced technologies include biomass integrated gasification combined cycle (BIGCC) systems, co- firing (with coal or gas), pyrolysis and second generation Biofuels. Second generation Biofuels can make use of biochemical technologies to convert the cellulose to sugars which can be converted to bioethanol, biodiesel, dimethyl ester, hydrogen and chemical intermediates in large scale bio-refineries.

Biomass fuels are typically used most efficiently and beneficially when generating both power and heat through a Combined Heat and Power (or Cogeneration) system. A typical CHP system provides:

  • Distributed generation of electrical and/or mechanical power.
  • Waste-heat recovery for heating, cooling, or process applications.
  • Seamless system integration for a variety of technologies, thermal applications, and fuel types into existing building infrastructure.

CHP systems consist of a number of individual components—prime mover (heat engine), generator, heat recovery, and electrical interconnection—configured into an integrated whole. The type of equipment that drives the overall system (i.e., the prime mover) typically identifies the CHP unit.

Prime movers for CHP units include reciprocating engines, combustion or gas turbines, steam turbines, microturbines, and fuel cells. These prime movers are capable of burning a variety of fuels, including natural gas, coal, oil, and alternative fuels to produce shaft power or mechanical energy.

A biomass-fueled Combined Heat and Power installation is an integrated power system comprised of three major components:

  1. Biomass receiving and feedstock preparation.
  2. Energy conversion – Conversion of the biomass into steam for direct combustion systems or into biogas for the gasification systems.
  3. Power and heat production – Conversion of the steam or syngas or biogas into electric power and process steam or hot water

The lowest cost forms of biomass for generating electricity are residues. Residues are the organic byproducts of food, fiber, and forest production, such as sawdust, rice husks, wheat straw, corn stalks, and sugarcane bagasse. Forest residues and wood wastes represent a large potential resource for energy production and include forest residues, forest thinnings, and primary mill residues.  Energy crops are perennial grasses and trees grown through traditional agricultural practices that are produced primarily to be used as feedstocks for energy generation, e.g. hybrid poplars, hybrid willows, and switchgrass. Animal manure can be digested anaerobically to produce biogas in large agricultural farms and dairies.

To turn a biomass resource into productive heat and/or electricity requires a number of steps and considerations, most notably evaluating the availability of suitable biomass resources; determining the economics of collection, storage, and transportation; and evaluating available technology options for converting biomass into useful heat or electricity.

Enhanced by Zemanta

Different Strategies in Composting

Compost Pile

The methodology of composting can be categorized into three major segments—anaerobic composting, aerobic composting, and vermicomposting. In anaerobic composting, the organic matter is decomposed in the absence of air. Organic matter may be collected in pits and covered with a thick layer of soil and left undisturbed six to eight months. The compost so formed may not be completely converted and may include aggregated masses.

Aerobic compostingis the process by which organic wastes are converted into compost or manure in presence of air and can be of different types. The most common is the Heap Method, where organic matter needs to be divided into three different types and to be placed in a heap one over the other, covered by a thin layer of soil or dry leaves. This heap needs to be mixed every week, and it takes about three weeks for conversion to take place. The process is same in the Pit Method, but carried out specially constructed pits. Mixing has to be done every 15 days, and there is no fixed time in which the compost may be ready. Berkley Method uses a labor-intensive technique and has precise requirements of the material to be composted. Easily biodegradable materials, such as grass, vegetable matter, etc., are mixed with animal matter in the ratio of 2:1. Compost is usually ready in 15 days.

Vermicomposting involves use of earthworms as natural and versatile bioreactors for the process of conversion. It is carried out in specially designed pits where earthworm culture also needs to be done. Vermicomposting is a precision-based option and requires overseeing of work by an expert. It is also a more expensive option (O&M costs especially are high). However, unlike the above two options, it is a completely odorless process making it a preferred solution in residential areas. It also has an extremely high rate of conversion, so quality of the end product is very high with rich macro and micronutrients. The end product also has the advantage that it can be dried and stored safely for a longer period of time.

Enhanced by Zemanta

Biomass Energy Resources in Indonesia

With Indonesia’s recovery from the Asian financial crisis of 1998, energy consumption has grown rapidly in past decade. The priority of the Indonesian energy policy is to reduce oil consumption and to use renewable energy. For power generation, it is important to increase electricity power in order to meet national demand and to change fossil fuel consumption by utilization of biomass wastes. The development of renewable energy is one of priority targets in Indonesia.

It is estimated that Indonesia produces 146.7 million tons of biomass per year, equivalent to about 470 GJ/y. The source of biomass energy is scattered all over the country, but the big potential in concentrated scale can be found in the Island of Kalimantan, Sumatera, Irian Jaya and Sulawesi. Studies estimate the electricity generation potential from the roughly 150 Mt of biomass residues produced per year to be about 50 GW or equivalent to roughly 470 GJ/year. These studies assume that the main source of biomass energy in Indonesia will be rice residues with a technical energy potential of 150 GJ/year. Other potential biomass sources are rubber wood residues (120 GJ/year), sugar mill residues (78 GJ/year), palm oil residues (67 GJ/year), and less than 20 GJ/year in total from plywood and veneer residues, logging residues, sawn timber residues, coconut residues, and other agricultural wastes.

Sustainable and renewable natural resources such as biomass can supply potential raw materials for energy conversion. In Indonesia, they comprise variable-sized wood from forests (i.e. natural forests, plantations and community forests that commonly produce small-diameter logs used as firewood by local people), woody residues from logging and wood industries, oil-palm shell waste from crude palm oil factories, coconut shell wastes from coconut plantations, as well as skimmed coconut oil and straw from rice cultivation.

The major crop residues to be considered for power generation in Indonesia are palm oil sugar processing and rice processing residues. Currently, 67 sugar mills are in operation in Indonesia and eight more are under construction or planned. The mills range in size of milling capacity from less than 1,000 tons of cane per day to 12,000 tons of cane per day. Current sugar processing in Indonesia produces 8 millions MT bagasse and 11.5 millions MT canes top and leaves. There are 39 palm oil plantations and mills currently operating in Indonesia, and at least eight new plantations are under construction. Most palm oil mills generate combined heat and power from fibres and shells, making the operations energy self –efficient. However, the use of palm oil residues can still be optimized in more energy efficient systems.

Other potential source of biomass energy can also come from municipal wastes. The quantity of city or municipal wastes in Indonesia is comparable with other big cities of the world. Most of these wastes are originated from household in the form of organic wastes from the kitchen. At present the wastes are either burned at each household or collected by the municipalities and later to be dumped into a designated dumping ground or landfill. Although the government is providing facilities to collect and clean all these wastes, however, due to the increasing number of populations coupled with inadequate number of waste treatment facilities in addition to inadequate amount of allocated budget for waste management, most of big cities in Indonesia had been suffering from the increasing problem of waste disposals.

The current pressure for cost savings and competitiveness in Indonesia’s most important biomass-based industries, along with the continually growing power demands of the country signal opportunities for increased exploitation of biomass wastes for power generation.

Enhanced by Zemanta

Biomass Resources from Sugar Industry

Venezuelan sugar cane (Saccharum) harvested fo...
Image via Wikipedia

Sugarcane is one of the most promising agricultural sources of biomass energy in the world. It is the most appropriate agricultural energy crop in most Cane producing countries due to its resistance to cyclonic winds, drought, pests and diseases, and its geographically widespread cultivation. Due to its high energy-to-volume ratio, it is considered one of nature’s most effective storage devices for solar energy and the most economically significant energy crop. The climatic and physiological factors that limit its cultivation to tropical and sub-tropical regions have resulted in its concentration in developing countries, and this, in turn, gives these countries a particular role in the world’s transition to sustainable use of natural resources.

 According to the International Sugar Organization (ISO), Sugarcane is a highly efficient converter of solar energy, and has the highest energy-to-volume ratio among energy crops. Indeed, it gives the highest annual yield of biomass of all species. Roughly, 1 ton of Sugarcane biomass-based on Bagasse, foliage and ethanol output – has an energy content equivalent to one barrel of crude oil.   Sugarcane produces mainly two types of biomass, Cane Trash and Bagasse. Cane Trash is the field residue remaining after harvesting the Cane stalk and Bagasse is the milling by-product which remains after extracting the Sugar from the stalk. The potential energy value of these residues has traditionally been ignored by policy-makers and masses in developing countries. However, with rising fossil fuel prices and dwindling firewood supplies, this material is increasingly viewed as a valuable Renewable Energy resource.

Sugar mills have been using Bagasse to generate steam and electricity for internal plant requirements while Cane Trash remains underutilized to a great extent. Cane Trash and Bagasse are produced during the harvesting and milling process of Sugar Cane which normally lasts 6 to 7 months.

Around the world, a portion of the Cane Trash is collected for sale to feed mills, while freshly cut green tops are sometimes collected for farm animals. In most cases, however, the residues are burned or left in the fields to decompose. Cane Trash, consisting of Sugarcane tops and leaves can potentially be converted into around 1kWh/kg, but is mostly burned in the field due to its bulkiness and its related high cost for collection/transportation.

 On the other hand, Bagasse has been traditionally used as a fuel in the Sugar mill itself, to produce steam for the process and electricity for its own use. In general, for every ton of Sugarcane processed in the mill, around 190 kg Bagasse is produced. Low pressure boilers and low efficiency steam turbines are commonly used in developing countries. It would be a good business proposition to upgrade the present cogeneration systems to highly efficient, high pressure systems with higher capacities to ensure utilization of surplus Bagasse.

Enhanced by Zemanta