Transforming food waste into energy

Healthy Grill


Anaerobic digestion, which is commonly used to treat wastewater solids, naturally produces methane as it breaks down organic matter. Harnessing methane to produce heat, electric power or biofuel (also known as biomethane)—and offset facility power needs— is becoming an important energy management option.

Divert organic matter – stuff made from plants and animals, such as food waste and yard clippings – away from landfills and transform it into energy is one of the methods that will bring great results. That reduces greenhouse gas emissions from landfills and turns trash into a substantial source of clean energy.

Successfully harnessing energy from organic waste will help the DoD and other agencies meet U.S. federal regulations that require renewable energy sources—7 percent by 2013, as mandated by the 2005 Energy Policy Act, and 25 percent by 2025, as mandated by the 2007 National Defense Authorization Act. 

If 50% of the US food waste…

View original post 16 more words


Thailand’s Biomass Energy Scenario

© Guerito 2005

Thailand’s annual energy consumption has risen sharply during the past decade and will continue its upward trend in the years to come. While energy demand has risen sharply, domestic sources of supply are limited, thus forcing a significant reliance on imports. To face this increasing demand, Thailand needs to produce more energy from its own renewable resources, particularly biomass wastes derived from agro-industry, such as bagasse, rice husk, wood chips, livestock and municipal wastes.

In 2005, total installed power capacity in Thailand was 26,430 MW. Renewable energy accounted for about 2 percent of the total installed capacity. In 2007, Thailand had about 777 MW of electricity from renewable energy that was sold to the grid. Several studies have projected that biomass wastes can cover up to 15 % of the energy demand in Thailand (Thailand-Danish Country Programme for Environmental Assistance 1998-2001, Ministry of Environment and Energy, 2000). These estimations are primarily made from biomass waste from the extraction part of agricultural activities, and for large scale agricultural processing of crops etc. – as for instance saw and palm oil mills – and do not include biomass wastes from SMEs in Thailand. Thus, the energy potential of biomass waste can be much larger if these resources are included. The major biomass resources in Thailand include the following:

  • Woody biomass residues from forest plantations
  • Agricultural residues (rice husk, bagasse, corn cobs, etc.)
  • Wood residues from wood and furniture industries    (bark, sawdust, etc.)
  • Biomass for ethanol production (cassava, sugar cane, etc.)
  • Biomass for biodiesel production (palm oil, jatropha oil, etc.)
  • Industrial wastewater from agro-industry
  • Livestock manure
  • Municipal solid wastes and sewage

Thailand’s vast biomass potential has been partially exploited through the use of traditional as well as more advanced conversion technologies for biogas, power generation, and biofuels. Rice, sugar, palm oil, and wood-related industries are the major potential biomass energy sources. The country has a fairly large biomass resource base of about 60 million tons generated each year that could be utilized for energy purposes, such as rice, sugarcane, rubber sheets, palm oil and cassava. Biomass has been a primary source of energy for many years, used for domestic heating and industrial cogeneration. For example, paddy husks are burned to produce steam for turbine operation in rice mills; bagasse and palm residues are used to produce steam and electricity for on-site manufacturing process; and rubber wood chips are burned to produce hot air for rubber wood seasoning.

In addition to biomass residues, wastewater containing organic matters from livestock farms and industries has increasingly been used as a potential source of biomass energy. Thailand’s primary biogas sources are pig farms and residues from food processing. The production potential of biogas from industrial wastewater from palm oil industries, tapioca starch industries, food processing industries, and slaughter industries is also significant. The energy-recovery and environmental benefits that the KWTE waste to energy project has already delivered is attracting keen interest from a wide range of food processing industries around the world.

Enhanced by Zemanta

Anaerobic Digestion of Agricultural Residues


The main problem with anaerobic digestion of crop residues is that most of the agricultural residues are lignocellulosic with low nitrogen content. To improve the digestibility of crop residues, pre-treatment methods like size reduction, electron irradiation, heat treatment, enzymatic action etc are necessary. For optimizing the C/N ratio of agricultural residues, co-digestion with sewage sludge, animal manure or poultry litter is recommended.

Several organic wastes from plants and animals have been exploited for biogas production as reported in the literature. Plant materials include agricultural crops such as sugar cane, cassava, corn etc, agricultural residues like rice straw, cassava rhizome, corn cobs etc, wood and wood residues (saw dust, pulp wastes, and paper mill. Others include molasses and bagasse from sugar refineries, waste streams such as rice husk from rice mills and residues from palm oil extraction and municipal solid wastes, etc. However, plant materials such as crop residues are more difficult to digest than animal wastes (manures) because of difficulty in achieving hydrolysis of cellulosic and lignocellulosic constituents.

Crop residues can be digested either alone or in co-digestion with other materials, employing either wet or dry processes. In the agricultural sector one possible solution to processing crop biomass is co-digestion together with animal manures, the largest agricultural waste stream. In addition to the production of renewable energy, controlled anaerobic digestion of animal manures reduces emissions of greenhouse gases, nitrogen and odour from manure management, and intensifies the recycling of nutrients within agriculture.

In co-digestion of plant material and manures, manures provide buffering capacity and a wide range of nutrients, while the addition of plant material with high carbon content balances the carbon to nitrogen (C/N) ratio of the feedstock, thereby decreasing the risk of ammonia inhibition. The gas production per digester volume can be increased by operating the digesters at a higher solids concentration. Batch high solids reactors, characterized by lower investment costs than those of continuously fed processes, but with comparable operational costs, are currently applied in the agricultural sector to a limited extent.

Enhanced by Zemanta

Biogas Strorage

English: Author: Alex Marshall
Image via Wikipedia

Selection of an appropriate biogas storage system makes a significant contribution to the efficiency and safety of a biogas plant. A biogas storage system also compensates fluctuations in the production and consumption of biogas as well as temperature-related changes in volume. There are two broad categories of biogas sto

Biogas plant Strem

rage systems: Internal Biogas Storage Tanks are integrated into the anaerobic digester while External Biogas Holders are separated from the digester forming autonomous components of a biogas plant.

The simplest and least expensive storage systems for on-site applications and intermediate storage of biogas are low-pressure systems. Floating gas holders on the digester form a low-pressure storage option for biogas systems. These systems typically operate at pressures below 2 psi. Floating gas holders can be made of steel, fiberglass, or a flexible fabric. A separate tank may be used with a floating gas holder for the storage of the digestate and also storage of the raw biogas. A major advantage of a digester with an integral gas storage component is the reduced capital cost of the system.

The least expensive and most trouble-free gas holder is the flexible inflatable fabric top, as it does not react with the H2S in the biogas and is integral to the digester. These types of covers are often used with plug-flow and complete-mix digesters. Flexible membrane materials commonly used for these gas holders include high-density polyethylene (HDPE), low-density polyethylene (LDPE), linear low density polyethylene (LLDPE), and chlorosulfonated polyethylene covered polyester. Thicknesses for cover materials typically vary from 0.5 to 2.5 millimeters.

Enhanced by Zemanta

Trends in Food Waste Management

Food waste is an untapped energy source that mostly ends up rotting in landfills, thereby releasing greenhouse gases into the atmosphere. Food waste is difficult to treat or recycle since it contains high levels of sodium salt and moisture, and is mixed with other waste during collection. Major generators of food wastes include hotels, restaurants, supermarkets, residential blocks, cafeterias, airline caterers, food processing industries, etc.

In United States, food waste is the third largest waste stream after paper and yard waste. Around 12.7 percent of the total municipal solid waste (MSW) generated in the year 2008 was food scraps that amounted to about 32 million tons. According to EPA, about 31 million tons of food waste was thrown away into landfills or incinerators in 2008. As far as United Kingdom is concerned, households throw away 8.3 million tons of food each year. These statistics are an indication of tremendous amount of food waste generated all over the world.

The proportion of food waste in municipal waste stream is gradually increasing and hence a proper food waste management strategy needs to be devised to ensure its eco-friendly and sustainable disposal. Food waste can be recycled via:

  • In-vessel composting (IVC): A treatment that breaks down biodegradable waste by naturally occurring micro-organisms with oxygen, in an enclosed vessel or tunnel;
  • Anaerobic digestion (AD): A treatment that breaks down biodegradable waste in the absence of oxygen, producing a renewable energy (biogas) that can be used to generate electricity and heat.

Currently, only about 3 percent of food waste is recycled throughout U.S., mainly through composting. Composting provides an alternative to landfill disposal of food waste, however it requires large areas of land, produces volatile organic compounds and consumes energy. Consequently, there is an urgent need to explore better recycling alternatives. Anaerobic digestion has been successfully used in several European and Asian countries to stabilize food wastes, and to provide beneficial end-products. Sweden, Austria, Denmark, Germany and England have led the way in developing new advanced biogas technologies and setting up new projects for conversion of food waste into energy.

Of the different types of organic wastes available, food waste holds the highest potential in terms of economic exploitation as it contains high amount of carbon and can be efficiently converted into biogas and organic fertilizer. Food waste can either be used as a single substrate in a biogas plant, or can be co-digested with organic wastes like cow manure, poultry litter, sewage, crop residues, abattoir wastes, etc.

Enhanced by Zemanta

Biomass Cogeneration

GE H series power generation gas turbine. This...

Biomass conversion technologies transform a variety of wastes into heat, electricity and biofuels by employing a host of strategies. Conversion routes are generally thermochemical or biochemical, but may also include chemical and physical. Physical methods are frequently employed for size reduction of biomass wastes but may also be used to aggregate and densify small particles into pellets or briquettes.

A wide range of conversion technologies are under continuous development to produce biomass energy carriers for both small and large scale energy applications. Combustion is the most widely used technology that releases heat and can also generate power by using boilers and steam turbines. The simplest way is to burn the biomass in a furnace, exploiting the heat generated to produce steam in a boiler, which is then used to drive a steam turbine. At the smaller scale, biomass pellet and briquette combustion systems mainly used for domestic and industrial heat supply are experiencing growing demand in some countries due to their convenience.

Advanced technologies include biomass integrated gasification combined cycle (BIGCC) systems, co- firing (with coal or gas), pyrolysis and second generation Biofuels. Second generation Biofuels can make use of biochemical technologies to convert the cellulose to sugars which can be converted to bioethanol, biodiesel, dimethyl ester, hydrogen and chemical intermediates in large scale bio-refineries.

Biomass fuels are typically used most efficiently and beneficially when generating both power and heat through a Combined Heat and Power (or Cogeneration) system. A typical CHP system provides:

  • Distributed generation of electrical and/or mechanical power.
  • Waste-heat recovery for heating, cooling, or process applications.
  • Seamless system integration for a variety of technologies, thermal applications, and fuel types into existing building infrastructure.

CHP systems consist of a number of individual components—prime mover (heat engine), generator, heat recovery, and electrical interconnection—configured into an integrated whole. The type of equipment that drives the overall system (i.e., the prime mover) typically identifies the CHP unit.

Prime movers for CHP units include reciprocating engines, combustion or gas turbines, steam turbines, microturbines, and fuel cells. These prime movers are capable of burning a variety of fuels, including natural gas, coal, oil, and alternative fuels to produce shaft power or mechanical energy.

A biomass-fueled Combined Heat and Power installation is an integrated power system comprised of three major components:

  1. Biomass receiving and feedstock preparation.
  2. Energy conversion – Conversion of the biomass into steam for direct combustion systems or into biogas for the gasification systems.
  3. Power and heat production – Conversion of the steam or syngas or biogas into electric power and process steam or hot water

The lowest cost forms of biomass for generating electricity are residues. Residues are the organic byproducts of food, fiber, and forest production, such as sawdust, rice husks, wheat straw, corn stalks, and sugarcane bagasse. Forest residues and wood wastes represent a large potential resource for energy production and include forest residues, forest thinnings, and primary mill residues.  Energy crops are perennial grasses and trees grown through traditional agricultural practices that are produced primarily to be used as feedstocks for energy generation, e.g. hybrid poplars, hybrid willows, and switchgrass. Animal manure can be digested anaerobically to produce biogas in large agricultural farms and dairies.

To turn a biomass resource into productive heat and/or electricity requires a number of steps and considerations, most notably evaluating the availability of suitable biomass resources; determining the economics of collection, storage, and transportation; and evaluating available technology options for converting biomass into useful heat or electricity.

Enhanced by Zemanta

Introduction to POME

Pure palm oil - production from rural Jukwa vi...
Image via Wikipedia

Palm Oil processing gives rise to highly polluting waste-water, known as Palm Oil Mill Effluent (POME), which is often discarded in disposal ponds, resulting in the leaching of contaminants that pollute the groundwater and soil, and in the release of methane gas into the atmosphere. POME is an oily wastewater generated by palm oil processing mills and consists of various suspended components. This liquid waste combined with the wastes from steriliser condensate and cooling water is called palm oil mill effluent (POME). On average, for each ton of FFB (fresh fruit bunches) processed, a standard palm oil mill generate about 1 tonne of liquid waste with biochemical oxygen demand (BOD) 27 kg, chemical oxygen demand (COD) 62 kg, suspended solids (SS) 35 kg and oil and grease 6 kg

POME has a very high Biochemical Oxygen Demand (BOD) and Chemical Oxygen Demand (COD), which is 100 times more than the municipal sewage. POME is a non-toxic waste, as no chemical is added during the oil extraction process, but will pose environmental issues due to large oxygen depleting capability in aquatic system due to organic and nutrient contents. The high organic matter is due to the presence of different sugars such as arabinose, xylose, glucose, galactose and manose. The suspended solids in the POME are mainly oil-bearing cellulosic materials from the fruits. Since the POME is non-toxic as no chemical is added in the oil extraction process, it is a good source of nutrients for microorganisms.

Currently, recovery of renewable organic-based product is a new approach in managing POME. The technology is aimed to recover by-products such as volatile fatty acid, biogas and poly-hydroxyalkanoates to promote sustainability of the palm oil industry. In addition, it is envisaged that POME can be sustainably reused as a fermentation substrate in production of various metabolites through biotechnological advances. In addition, POME consists of high organic acids and is suitable to be used as a carbon source

Anaerobic digestion is widely adopted in the industry as a primary treatment for POME. Biogas is produced in the process in the amount of 20 m3per ton FFB. This effluent could be used for biogas production through anaerobic digestion. At many Palm-oil mills this process is already in place to meet water quality standards for industrial effluent. The gas, however, is flared off. Liquid effluents from Palm Oil mills in Southeast Asia can be used to generate power through gas turbines or gas-fired engines.

Enhanced by Zemanta

Biogas Upgradation

Enrichment of biogas is primarily achieved by carbon dioxide removal which then enhances the energy value of the gas to give longer, driving distances with a fixed gas storage volume. Removal of carbon dioxide also provides a consistent gas quality with respect to energy value. The latter is regarded to be of great importance from the vehicle manufacturers in order to reach low emissions of nitrogen oxide. At present four different methods are used commercially for removal of carbon dioxide from biogas either to reach vehicle fuel standard or to reach natural gas quality for injection to the natural gas grid. These methods are:

  • Water absorption
  • Polyethylene glycol absorption
  • Carbon molecular sieves
  • Membrane separation

 Water scrubbing

Water scrubbing is used to remove carbon dioxide but also hydrogen sulphide from biogas since these gases is more soluble in water than methane. The absorption process is purely physical. Usually the biogas is pressurized and fed to the bottom of a packed column where water is fed on the top and so the absorption process is operated counter-currently.

Polyethylene glycol scrubbing

Polyethylene glycol scrubbing is a physical absorption process. Selexol is one of the trade names used for a solvent. In this solvent, like in water, both carbon dioxide and hydrogen sulphide are more soluble than methane. The big difference between water and Selexol is that carbon dioxide and hydrogen sulphide are more soluble in Selexol which results in a lower solvent demand and reduced pumping. In addition, water and halogenated hydrocarbons (contaminants in biogas from landfills) are removed when scrubbing biogas with Selexol.

Carbon molecular sieves

Molecular sieves are excellent products to separate specifically a number of different gaseous compounds in biogas. Thereby the molecules are usually loosely adsorbed in the cavities of the carbon sieve but not irreversibly bound. The selectivity of adsorption is achieved by different mesh sizes and/or application of different gas pressures. When the pressure is released the compounds extracted from the biogas are desorbed. The process is therefore often called “pressure swing adsorption” (PSA). To enrich methane from biogas the molecular sieve is applied which is produced from coke rich in pores in the micrometer range. The pores are then further reduced by cracking of the hydrocarbons. In order to reduce the energy consumption for gas compression, a series of vessels are linked together. The gas pressure released from one vessel is subsequently used by the others. Usually four vessels in a row are used filled with molecular sieve which removes at the same time CO2 and water vapour.


There are two basic systems of gas purification with membranes: a high pressure gas separation with gas phases on both sides of the membrane, and a low-pressure gas liquid absorption separation where a liquid absorbs the molecules diffusing through the membrane.

  • High pressure gas separation

Pressurized gas (36 bar) is first cleaned over for example an activated carbon bed to remove (halogenated) hydrocarbons and hydrogen sulphide from the raw gas as well as oil vapour from the compressors. The carbon bed is followed by a particle filter and a heater. The raw gas is upgraded in 3 stages to a clean gas with 96 % methane or more. The waste gas from the first two stages is recycled and the methane can be recovered. The waste gas from stage 3 (and in part of stage 2) is flared or used in a steam boiler as it still contains 10 to 20 % methane.

  • Gas-liquid absorption membranes

Gas-liquid absorption using membranes is a separation technique which was developed for biogas upgrading in the recent past. The essential element is a micro-porous hydrophobic membrane separating the gaseous from the liquid phase. The molecules from the gas stream, flowing in one direction, which are able to diffuse through the membrane will be absorbed on the other side by the liquid flowing in counter current. The absorption membranes work at approx. atmospheric pressure (1 bar) which allows low-cost construction. The removal of gaseous components is very efficient. At a temperature of 25 to 35°C the H2S concentration in the raw gas of 2 % is reduced to less than 250 ppm.

Biomass Energy Resources in Indonesia

With Indonesia’s recovery from the Asian financial crisis of 1998, energy consumption has grown rapidly in past decade. The priority of the Indonesian energy policy is to reduce oil consumption and to use renewable energy. For power generation, it is important to increase electricity power in order to meet national demand and to change fossil fuel consumption by utilization of biomass wastes. The development of renewable energy is one of priority targets in Indonesia.

It is estimated that Indonesia produces 146.7 million tons of biomass per year, equivalent to about 470 GJ/y. The source of biomass energy is scattered all over the country, but the big potential in concentrated scale can be found in the Island of Kalimantan, Sumatera, Irian Jaya and Sulawesi. Studies estimate the electricity generation potential from the roughly 150 Mt of biomass residues produced per year to be about 50 GW or equivalent to roughly 470 GJ/year. These studies assume that the main source of biomass energy in Indonesia will be rice residues with a technical energy potential of 150 GJ/year. Other potential biomass sources are rubber wood residues (120 GJ/year), sugar mill residues (78 GJ/year), palm oil residues (67 GJ/year), and less than 20 GJ/year in total from plywood and veneer residues, logging residues, sawn timber residues, coconut residues, and other agricultural wastes.

Sustainable and renewable natural resources such as biomass can supply potential raw materials for energy conversion. In Indonesia, they comprise variable-sized wood from forests (i.e. natural forests, plantations and community forests that commonly produce small-diameter logs used as firewood by local people), woody residues from logging and wood industries, oil-palm shell waste from crude palm oil factories, coconut shell wastes from coconut plantations, as well as skimmed coconut oil and straw from rice cultivation.

The major crop residues to be considered for power generation in Indonesia are palm oil sugar processing and rice processing residues. Currently, 67 sugar mills are in operation in Indonesia and eight more are under construction or planned. The mills range in size of milling capacity from less than 1,000 tons of cane per day to 12,000 tons of cane per day. Current sugar processing in Indonesia produces 8 millions MT bagasse and 11.5 millions MT canes top and leaves. There are 39 palm oil plantations and mills currently operating in Indonesia, and at least eight new plantations are under construction. Most palm oil mills generate combined heat and power from fibres and shells, making the operations energy self –efficient. However, the use of palm oil residues can still be optimized in more energy efficient systems.

Other potential source of biomass energy can also come from municipal wastes. The quantity of city or municipal wastes in Indonesia is comparable with other big cities of the world. Most of these wastes are originated from household in the form of organic wastes from the kitchen. At present the wastes are either burned at each household or collected by the municipalities and later to be dumped into a designated dumping ground or landfill. Although the government is providing facilities to collect and clean all these wastes, however, due to the increasing number of populations coupled with inadequate number of waste treatment facilities in addition to inadequate amount of allocated budget for waste management, most of big cities in Indonesia had been suffering from the increasing problem of waste disposals.

The current pressure for cost savings and competitiveness in Indonesia’s most important biomass-based industries, along with the continually growing power demands of the country signal opportunities for increased exploitation of biomass wastes for power generation.

Enhanced by Zemanta

Biomass Energy Developments in Jordan

The location of Municipality of Greater Amman ...
Image via Wikipedia

Renewable energy systems have been used in Jordan since early 1970s. Infact, Jordan has been a pioneer in renewable energy promotion in the Middle East with its first wind power pilot project in Al-Ibrahemiya as early as 1988. Systematic monitoring of the technological developments and implementation/execution of demonstration and pilot projects has been the hallmark of Jordan’s foray into clean energy sector.

Municipal solid wastes represent the best source of biomass in Jordan. In terms of quantity per capita and constituents, the waste generated in Jordan is comparable to most semi-industrialized nations. The per capita of waste generated in Jordan is about 0.9 kg/day. The total generation of municipal waste in Jordan is estimated at 1.84 million tons per year. The main resources of organic waste in Jordan that can be potentially used to produce biogas are summarized as follows:

  • Municipal waste from big cities
  • Organic wastes from slaughterhouse, vegetable market, hotels and restaurants.
  • Organic waste from agro-industries
  • Animal manure, mainly from cows and chickens.
  • Sewage sludge and septic.
  • Olive mills.
  • Organic industrial waste

According to a study conducted by the Greater Amman Municipality, around 1.5 million tonnes of organic waste was generated in Jordan in 2009. In addition, an annual amount of 1.83 million cubic meter of septic and sewage sludge from treatment of 44 million cubic meter of sewage water is generated in greater Amman area. The potential annual sewage sludge and septic generated in Amman can be estimated at 85,000 tons of dry matter.

The Government of Jordan, in collaboration with UNDP, GEF and the Danish Government, established 1MW Biomethanation plant at Rusaifeh landfill near Amman in 1999.  The Plant has been successfully operating since its commissioning and efforts are underway to increase its capacity to 5MW. Infact, the project has achieved net yearly profit from electricity sale of about US $ 100, 000.  The project consists of a system of twelve landfill gas wells and an anaerobic digestion plant based on 60 tons per day of organic wastes from hotels, restaurants and slaughterhouses in Amman. The successful installation of the biogas project has made it a role model in the entire region and several big cities are striving to replicate the model.

Enhanced by Zemanta