Anaerobic Digestion of Agricultural Residues

Agriculture

The main problem with anaerobic digestion of crop residues is that most of the agricultural residues are lignocellulosic with low nitrogen content. To improve the digestibility of crop residues, pre-treatment methods like size reduction, electron irradiation, heat treatment, enzymatic action etc are necessary. For optimizing the C/N ratio of agricultural residues, co-digestion with sewage sludge, animal manure or poultry litter is recommended.

Several organic wastes from plants and animals have been exploited for biogas production as reported in the literature. Plant materials include agricultural crops such as sugar cane, cassava, corn etc, agricultural residues like rice straw, cassava rhizome, corn cobs etc, wood and wood residues (saw dust, pulp wastes, and paper mill. Others include molasses and bagasse from sugar refineries, waste streams such as rice husk from rice mills and residues from palm oil extraction and municipal solid wastes, etc. However, plant materials such as crop residues are more difficult to digest than animal wastes (manures) because of difficulty in achieving hydrolysis of cellulosic and lignocellulosic constituents.

Crop residues can be digested either alone or in co-digestion with other materials, employing either wet or dry processes. In the agricultural sector one possible solution to processing crop biomass is co-digestion together with animal manures, the largest agricultural waste stream. In addition to the production of renewable energy, controlled anaerobic digestion of animal manures reduces emissions of greenhouse gases, nitrogen and odour from manure management, and intensifies the recycling of nutrients within agriculture.

In co-digestion of plant material and manures, manures provide buffering capacity and a wide range of nutrients, while the addition of plant material with high carbon content balances the carbon to nitrogen (C/N) ratio of the feedstock, thereby decreasing the risk of ammonia inhibition. The gas production per digester volume can be increased by operating the digesters at a higher solids concentration. Batch high solids reactors, characterized by lower investment costs than those of continuously fed processes, but with comparable operational costs, are currently applied in the agricultural sector to a limited extent.

Enhanced by Zemanta
Advertisements

A Glance at Biomass Energy Technologies

Biomass energy technology is inherently flexible. The variety of technological options available means that it can be applied at a small, localized scale primarily for heat, or it can be used in much larger base-load power generation capacity whilst also producing heat. Biomass generation can thus be tailored to rural or urban environments, and utilized in domestic, commercial or industrial applications.

A wide range of technologies are available for realizing the potential of biomass waste as an energy source, ranging from very simple systems for disposing of dry waste to more complex technologies capable of dealing with large amounts of industrial waste.

Biomass can be converted into energy by simple combustion, by co-firing with other fuels or through some intermediate process such as gasification. The energy produced can be electrical power, heat or both (combined heat and power, or CHP). The advantage of utilizing heat as well as or instead of electrical power is the marked improvement of conversion efficiency – electrical generation has a typical efficiency of around 30%, but if heat is used efficiencies can rise to more than 85%.

 Biochemical processes, like anaerobic digestion, can also produce clean energy in the form of biogas which can be converted to power and heat using a gas engine. In addition, wastes can also yield liquid fuels, such as cellulosic ethanol, which can be used to replace petroleum-based fuels. Algal biomass is also emerging as a good source of energy because it can serve as natural source of oil, which conventional refineries can transform into jet fuel or diesel fuel.

Energy Recovery from Tannery Wastes

The conventional leather tanning technology is highly polluting as it produces large amounts of organic and chemical pollutants. Wastes generated by the leather processing industries pose a major challenge to the environment. According to conservative estimates, about 600,000 tons per year of solid waste are generated worldwide by leather industry and approximately 40–50% of the hides are lost to shavings and trimmings.

The energy generated by anaerobic digestion or gasification of tannery wastes can be put to beneficial use, in both drying the wastes and as an energy source for the tannery’s own requirements, CHP or electricity export from the site. A large amount of the energy recovered is surplus to the energy conversion process requirements and can be reused by the tannery directly. Infact, implementation of waste-to-energy systems have the potential to make the industry self-sufficient in terms of thermal energy requirements. Tanneries are major energy users, and requires up to 30 kW of energy to produce a single finished hide. Thus, waste-to-energy plant in a tannery promotes the production of electricity from decentralized renewable energy sources, apart from resolving serious environmental issues posed by leather industry wastes.

To read the full article, please visit http://www.altenergymag.com/emagazine.php?art_id=1499