The main problem with anaerobic digestion of crop residues is that most of the agricultural residues are lignocellulosic with low nitrogen content. To improve the digestibility of crop residues, pre-treatment methods like size reduction, electron irradiation, heat treatment, enzymatic action etc are necessary. For optimizing the C/N ratio of agricultural residues, co-digestion with sewage sludge, animal manure or poultry litter is recommended.
Several organic wastes from plants and animals have been exploited for biogas production as reported in the literature. Plant materials include agricultural crops such as sugar cane, cassava, corn etc, agricultural residues like rice straw, cassava rhizome, corn cobs etc, wood and wood residues (saw dust, pulp wastes, and paper mill. Others include molasses and bagasse from sugar refineries, waste streams such as rice husk from rice mills and residues from palm oil extraction and municipal solid wastes, etc. However, plant materials such as crop residues are more difficult to digest than animal wastes (manures) because of difficulty in achieving hydrolysis of cellulosic and lignocellulosic constituents.
Crop residues can be digested either alone or in co-digestion with other materials, employing either wet or dry processes. In the agricultural sector one possible solution to processing crop biomass is co-digestion together with animal manures, the largest agricultural waste stream. In addition to the production of renewable energy, controlled anaerobic digestion of animal manures reduces emissions of greenhouse gases, nitrogen and odour from manure management, and intensifies the recycling of nutrients within agriculture.
In co-digestion of plant material and manures, manures provide buffering capacity and a wide range of nutrients, while the addition of plant material with high carbon content balances the carbon to nitrogen (C/N) ratio of the feedstock, thereby decreasing the risk of ammonia inhibition. The gas production per digester volume can be increased by operating the digesters at a higher solids concentration. Batch high solids reactors, characterized by lower investment costs than those of continuously fed processes, but with comparable operational costs, are currently applied in the agricultural sector to a limited extent.
With Indonesia’s recovery from the Asian financial crisis of 1998, energy consumption has grown rapidly in past decade. The priority of the Indonesian energy policy is to reduce oil consumption and to use renewable energy. For power generation, it is important to increase electricity power in order to meet national demand and to change fossil fuel consumption by utilization of biomass wastes. The development of renewable energy is one of priority targets in Indonesia.
It is estimated that Indonesia produces 146.7 million tons of biomass per year, equivalent to about 470 GJ/y. The source of biomass energy is scattered all over the country, but the big potential in concentrated scale can be found in the Island of Kalimantan, Sumatera, Irian Jaya and Sulawesi. Studies estimate the electricity generation potential from the roughly 150 Mt of biomass residues produced per year to be about 50 GW or equivalent to roughly 470 GJ/year. These studies assume that the main source of biomass energy in Indonesia will be rice residues with a technical energy potential of 150 GJ/year. Other potential biomass sources are rubber wood residues (120 GJ/year), sugar mill residues (78 GJ/year), palm oil residues (67 GJ/year), and less than 20 GJ/year in total from plywood and veneer residues, logging residues, sawn timber residues, coconut residues, and other agricultural wastes.
Sustainable and renewable natural resources such as biomass can supply potential raw materials for energy conversion. In Indonesia, they comprise variable-sized wood from forests (i.e. natural forests, plantations and community forests that commonly produce small-diameter logs used as firewood by local people), woody residues from logging and wood industries, oil-palm shell waste from crude palm oil factories, coconut shell wastes from coconut plantations, as well as skimmed coconut oil and straw from rice cultivation.
The major crop residues to be considered for power generation in Indonesia are palm oil sugar processing and rice processing residues. Currently, 67 sugar mills are in operation in Indonesia and eight more are under construction or planned. The mills range in size of milling capacity from less than 1,000 tons of cane per day to 12,000 tons of cane per day. Current sugar processing in Indonesia produces 8 millions MT bagasse and 11.5 millions MT canes top and leaves. There are 39 palm oil plantations and mills currently operating in Indonesia, and at least eight new plantations are under construction. Most palm oil mills generate combined heat and power from fibres and shells, making the operations energy self –efficient. However, the use of palm oil residues can still be optimized in more energy efficient systems.
Other potential source of biomass energy can also come from municipal wastes. The quantity of city or municipal wastes in Indonesia is comparable with other big cities of the world. Most of these wastes are originated from household in the form of organic wastes from the kitchen. At present the wastes are either burned at each household or collected by the municipalities and later to be dumped into a designated dumping ground or landfill. Although the government is providing facilities to collect and clean all these wastes, however, due to the increasing number of populations coupled with inadequate number of waste treatment facilities in addition to inadequate amount of allocated budget for waste management, most of big cities in Indonesia had been suffering from the increasing problem of waste disposals.
The current pressure for cost savings and competitiveness in Indonesia’s most important biomass-based industries, along with the continually growing power demands of the country signal opportunities for increased exploitation of biomass wastes for power generation.
Sugarcane is one of the most promising agricultural sources of biomass energy in the world. It is the most appropriate agricultural energy crop in most Cane producing countries due to its resistance to cyclonic winds, drought, pests and diseases, and its geographically widespread cultivation. Due to its high energy-to-volume ratio, it is considered one of nature’s most effective storage devices for solar energy and the most economically significant energy crop. The climatic and physiological factors that limit its cultivation to tropical and sub-tropical regions have resulted in its concentration in developing countries, and this, in turn, gives these countries a particular role in the world’s transition to sustainable use of natural resources.
According to the International Sugar Organization (ISO), Sugarcane is a highly efficient converter of solar energy, and has the highest energy-to-volume ratio among energy crops. Indeed, it gives the highest annual yield of biomass of all species. Roughly, 1 ton of Sugarcane biomass-based on Bagasse, foliage and ethanol output – has an energy content equivalent to one barrel of crude oil. Sugarcane produces mainly two types of biomass, Cane Trash and Bagasse. Cane Trash is the field residue remaining after harvesting the Cane stalk and Bagasse is the milling by-product which remains after extracting the Sugar from the stalk. The potential energy value of these residues has traditionally been ignored by policy-makers and masses in developing countries. However, with rising fossil fuel prices and dwindling firewood supplies, this material is increasingly viewed as a valuable Renewable Energy resource.
Sugar mills have been using Bagasse to generate steam and electricity for internal plant requirements while Cane Trash remains underutilized to a great extent. Cane Trash and Bagasse are produced during the harvesting and milling process of Sugar Cane which normally lasts 6 to 7 months.
Around the world, a portion of the Cane Trash is collected for sale to feed mills, while freshly cut green tops are sometimes collected for farm animals. In most cases, however, the residues are burned or left in the fields to decompose. Cane Trash, consisting of Sugarcane tops and leaves can potentially be converted into around 1kWh/kg, but is mostly burned in the field due to its bulkiness and its related high cost for collection/transportation.
On the other hand, Bagasse has been traditionally used as a fuel in the Sugar mill itself, to produce steam for the process and electricity for its own use. In general, for every ton of Sugarcane processed in the mill, around 190 kg Bagasse is produced. Low pressure boilers and low efficiency steam turbines are commonly used in developing countries. It would be a good business proposition to upgrade the present cogeneration systems to highly efficient, high pressure systems with higher capacities to ensure utilization of surplus Bagasse.
The production of biofuels from lignocellulosic feedstocks can be achieved through two very different processing routes. They are:
Biochemical – in which enzymes and other micro-organisms are used to convert cellulose and hemicellulose components of the feedstocks to sugars prior to their fermentation to produce ethanol;
Thermo-chemical – where pyrolysis/gasification technologies produce a synthesis gas (CO + H2) from which a wide range of long carbon chain biofuels, such as synthetic diesel or aviation fuel, can be reformed.
Lignocellulosic biomass consists mainly of lignin and the polysaccharides cellulose and hemicellulose. Compared with the production of ethanol from first-generation feedstocks, the use of lignocellulosic biomass is more complicated because the polysaccharides are more stable and the pentose sugars are not readily fermentable by Saccharomyces cerevisiae. In order to convert lignocellulosic biomass to biofuels the polysaccharides must first be hydrolysed, or broken down, into simple sugars using either acid or enzymes. Several biotechnology-based approaches are being used to overcome such problems, including the development of strains of Saccharomyces cerevisiae that can ferment pentose sugars, the use of alternative yeast species that naturally ferment pentose sugars, and the engineering of enzymes that are able to break down cellulose and hemicellulose into simple sugars.
Lignocellulosic processing pilot plants have been established in the EU, in Denmark, Spain and Sweden. The world’s largest demonstration facility of lignocellulose ethanol (from wheat, barley straw and corn stover), with a capacity of 2.5 Ml, was first established by Iogen Corporation in Ottawa, Canada. Many other processing facilities are now in operation or planning throughout the world.
Ethanol from lignocellulosic biomass is produced mainly via biochemical routes. The three major steps involved are pretreatment, enzymatic hydrolysis, and fermentation as shown in Figure. Biomass is pretreated to improve the accessibility of enzymes. After pretreatment, biomass undergoes enzymatic hydrolysis for conversion of polysaccharides into monomer sugars, such as glucose and xylose. Subsequently, sugars are fermented to ethanol by the use of different microorganisms.
Pretreated biomass can directly be converted to ethanol by using the process called simultaneous saccharification and cofermentation (SSCF). Pretreatment is a critical step which enhances the enzymatic hydrolysis of biomass. Basically, it alters the physical and chemical properties of biomass and improves the enzyme access and effectiveness which may also lead to a change in crystallinity and degree of polymerization of cellulose. The internal surface area and pore volume of pretreated biomass are increased which facilitates substantial improvement in accessibility of enzymes. The process also helps in enhancing the rate and yield of monomeric sugars during enzymatic hydrolysis steps.
Pretreatment methods can be broadly classified into four groups – physical, chemical, physio-chemical and biological. Physical pretreatment processes employ the mechanical comminution or irradiation processes to change only the physical characteristics of biomass. The physio-chemical process utilizes steam or steam and gases, like SO2 and CO2. The chemical processes employs acids (H2SO4, HCl, organic acids etc) or alkalis (NaOH, Na2CO3, Ca(OH)2, NH3 etc). The acid treatment typically shows the selectivity towards hydrolyzing the hemicelluloses components, whereas alkalis have better selectivity for the lignin. The fractionation of biomass components after such processes help in improving the enzymes accessibility which is also important to the efficient utilization of enzymes.
Presently, a ton of dry biomass typically yields 60-70 gallons of bioethanol. The major cost components in bioethanol production from lignocellulosic biomass are the pretreatment and the enzymatic hydrolysis steps. In fact, these two process are someway interrelated too where an efficient pretreatment strategy can save substantial enzyme consumption. Pretreatment step can also affect the cost of other operations such as size reduction prior to pretreatment. Therefore, optimization of these two important steps, which collectively contributes about 70% of the total processing cost, are the major challenges in the commercialization of bioethanol from 2nd generation feedstock.
Biomass is one of the most important sources of renewable energy in Malaysia. The National Biofuel Policy, launched in 2006 encourages the use of environmentally friendly, sustainable and viable sources of biomass energy. Under the Five Fuel Policy, the government of Malaysia has identified biomass as one of the potential renewable energy. Malaysia produces atleast 168 million tonnes of biomass, including timber and oil palm waste, rice husks, coconut trunk fibres, municipal waste and sugar cane waste annually. Being a major agricultural commodity producer in the region Malaysia is well positioned amongst the ASEAN countries to promote the use of biomass as a renewable energy source.
Malaysia has been one of the world’s largest producers and exporters of palm oil for the last forty years. The Palm Oil industry, besides producing Crude Palm Oil (CPO) and Palm Kernel Oil, produces Palm Shell, Press Fibre, Empty Fruit Bunches (EFB), Palm Oil Mill Effluent (POME), Palm Trunk (during replanting) and Palm Fronds (during pruning). Almost 70% of the volume from the processing of fresh fruit bunch is removed as waste. Malaysia has approximately 4 million hectares of land under oil palm plantation. Over 75% of total area planted is located in just four states, Sabah, Johor, Pahang and Sarawak, each of which has over half a million hectares under cultivation. The total amount of processed FFB (Fresh Fruit Bunches) was estimated to be 75 million tons while the total amount of EFB produced was estimated to be 16.6 million tons. Around 58 million tons of POME is produced in Malaysia annually, which has the potential to produce an estimated 15 billion m3 of biogas can be produced each year.
Rice husk is another important agricultural biomass resource in Malaysia with good potential for power cogeneration. An example of its attractive energy potential is biomass power plant in the state of Perlis which uses rice husk as the main source of fuel and generates 10 MW power to meet the requirements of 30,000 households. The US$15 million project has been undertaken by Bio-Renewable Power Sdn Bhd in collaboration with the Perlis state government, while technology provider is Finland’s Foster Wheeler Energia Oy.
Under the EC-ASEAN Cogeneration Program, there are three ongoing Full Scale Demonstration Projects (FSDPs) – Titi Serong, Sungai Dingin Palm Oil Mill and TSH Bioenergy – to promote biomass energy systems in Malaysia. The 1.5MW Titi Serong power plant, located at Parit Buntar (Perak), is based on rice husk while the 2MW Sungai Dingin Palm Oil Mill project make use of palm kernel shell and fibre to generate steam and electricity. The 14MW TSH Bioenergy Sdn Bhd, located at Tawau (Sabah), is the biggest biomass power plant in Malaysia and utilizes empty fruit bunches, palm oil fibre and palm kernel shell as fuel resources.
Like any developing country, the Philippines is facing a formidable challenge of fostering sustainable energy options to support the energy requirements of its economic and social development goals with minimal adverse effects on the environment. In the Philippines, renewable energy sources contribute 43 percent to the country’s primary energy mix, one of the highest in Southeast Asia. The Philippines has an existing capacity of 5,500 MW of renewable energy power. Out of which, 61 percent is hydropower while 37 percent is geothermal power. Biomass energy application accounts for around 15 percent of the primary energy use in the country. The resources available in the Philippines can generate biomass projects with a potential capacity of around 200 MW.
The country has abundant supplies of biomass resources, offering much potential for clean energy generation. These include agricultural crop residues, forest residues, animal wastes, agro-industrial wastes, municipal solid wastes and aquatic biomass. The most common agricultural wastes are rice hull, bagasse, coconut shell/husk and coconut coir. The use of crop residues as biofuels is increasing in the Philippines as fossil fuel prices continue to rise. Rice hull is perhaps the most important, underdeveloped biomass resource that could be fully utilized in a sustainable manner.
The Philippines is mainly an agricultural country with a land area of 30 million hectares, 47 percent of which is agricultural. The total area devoted to agricultural crops is 13 million hectares distributed among food grains, food crops and non-food crops.Among the crops grown, rice, coconut and sugarcane are major contributors to biomass energy resources. The most common agricultural residues are rice husk, rice straw, coconut husk, coconut shell and bagasse. The country has good potential for biomass power plants as one-third of the country’s agricultural land produces rice, and consequently large volumes of rice straw and hulls are generated.
Energy is the driving force for development in all countries of the world. The increasing clamor for energy and satisfying it with a combination of conventional and renewable resources is a big challenge. Accompanying energy problems in different parts of the world, another problem that is assuming critical proportions is that of urban waste accumulation. The quantity of waste produced all over the world amounted to more than 12 billion tonnes in 2006, with estimates of up to 13 billion tonnes in 2011. The rapid increase in population coupled with changing lifestyle and consumption patterns is expected to result in an exponential increase in waste generation of upto 18 billion tonnes by year 2020.
Waste generation rates are affected by socio-economic development, degree of industrialization, and climate. Generally, the greater the economic prosperity and the higher percentage of urban population, the greater the amount of solid waste produced. Reduction in the volume and mass of solid waste is a crucial issue especially in the light of limited availability of final disposal sites in many parts of the world. Millions of tonnes of waste are generated each year with the vast majority disposed of in open fields or burnt wantonly.
Waste-to-Energy (WTE) is the use of modern combustion and biochemical technologies to recover energy, usually in the form of electricity and steam, from urban wastes. These new technologies can reduce the volume of the original waste by 90%, depending upon composition and use of outputs. The main categories of waste-to-energy technologies are physical technologies, which process waste to make it more useful as fuel; thermal technologies, which can yield heat, fuel oil, or syngas from both organic and inorganic wastes; and biological technologies, in which bacterial fermentation is used to digest organic wastes to yield fuel. Waste-to-energy technologies can address a host of environmental issues, such as land use and pollution from landfills, and increasing reliance on fossil fuels.
Biomass energy projects provide major business opportunities, environmental benefits, and rural development. Feedstocks can be obtained from a wide array of sources without jeopardizing the food and feed supply, forests, and biodiversity in the world.
Agricultural Residues
Crop residues encompasses all agricultural wastes such as bagasse, straw, stem, stalk, leaves, husk, shell, peel, pulp, stubble, etc. Large quantities of crop residues are produced annually worldwide, and are vastly underutilised. Rice produces both straw and rice husks at the processing plant which can be conveniently and easily converted into energy. Significant quantities of biomass remain in the fields in the form of cob when maize is harvested which can be converted into energy. Sugar cane harvesting leads to harvest residues in the fields while processing produces fibrous bagasse, both of which are good sources of energy. Harvesting and processing of coconuts produces quantities of shell and fibre that can be utilized.
Current farming practice is usually to plough these residues back into the soil, or they are burnt, left to decompose, or grazed by cattle. These residues could be processed into liquid fuels or thermochemical processed to produce electricity and heat. Agricultural residues are characterized by seasonal availability and have characteristics that differ from other solid fuels such as wood, charcoal, char briquette. The main differences are the high content of volatile matter and lower density and burning time.
Animal Waste
There are a wide range of animal wastes that can be used as sources of biomass energy. The most common sources are animal and poultry manures. In the past this waste was recovered and sold as a fertilizer or simply spread onto agricultural land, but the introduction of tighter environmental controls on odour and water pollution means that some form of waste management is now required, which provides further incentives for waste-to-energy conversion.
The most attractive method of converting these waste materials to useful form is anaerobic digestion which gives biogas that can be used as a fuel for internal combustion engines, to generate electricity from small gas turbines, burnt directly for cooking, or for space and water heating.
Forestry Residues
Forestry residues are generated by operations such as thinning of plantations, clearing for logging roads, extracting stem-wood for pulp and timber, and natural attrition. Harvesting may occur as thinning in young stands, or cutting in older stands for timber or pulp that also yields tops and branches usable for biomass energy. Harvesting operations usually remove only 25 to 50 percent of the volume, leaving the residues available as biomass for energy.
Stands damaged by insects, disease or fire are additional sources of biomass. Forest residues normally have low density and fuel values that keep transport costs high, and so it is economical to reduce the biomass density in the forest itself.
Wood Wastes
Wood processing industries primarily include sawmilling, plywood, wood panel, furniture, building component, flooring, particle board, moulding, jointing and craft industries. Wood wastes generally are concentrated at the processing factories, e.g. plywood mills and sawmills. The amount of waste generated from wood processing industries varies from one type industry to another depending on the form of raw material and finished product.
Generally, the waste from wood industries such as saw millings and plywood, veneer and others are sawdust, off-cuts, trims and shavings. Sawdust arise from cutting, sizing, re-sawing, edging, while trims and shaving are the consequence of trimming and smoothing of wood. In general, processing of 1,000 kg of wood in the furniture industries will lead to waste generation of almost half (45 %), i.e. 450 kg of wood. Similarly, when processing 1,000 kg of wood in sawmill, the waste will amount to more than half (52 %), i.e. 520 kg wood.
Industrial Wastes
The food industry produces a large number of residues and by-products that can be used as biomass energy sources. These waste materials are generated from all sectors of the food industry with everything from meat production to confectionery producing waste that can be utilised as an energy source.
Solid wastes include peelings and scraps from fruit and vegetables, food that does not meet quality control standards, pulp and fibre from sugar and starch extraction, filter sludges and coffee grounds. These wastes are usually disposed of in landfill dumps.
Liquid wastes are generated by washing meat, fruit and vegetables, blanching fruit and vegetables, pre-cooking meats, poultry and fish, cleaning and processing operations as well as wine making.
These waste waters contain sugars, starches and other dissolved and solid organic matter. The potential exists for these industrial wastes to be anaerobically digested to produce biogas, or fermented to produce ethanol, and several commercial examples of waste-to-energy conversion already exist.
Pulp and paper industry is considered to be one of the highly polluting industries and consumes large amount of energy and water in various unit operations. The wastewater discharged by this industry is highly heterogeneous as it contains compounds from wood or other raw materials, processed chemicals as well as compound formed during processing. Black liquor can be judiciously utilized for production of biogas using anaerobic UASB technology.
Municipal Solid Wastes and Sewage
Millions of tonnes of household waste are collected each year with the vast majority disposed of in open fields. The biomass resource in MSW comprises the putrescibles, paper and plastic and averages 80% of the total MSW collected. Municipal solid waste can be converted into energy by direct combustion, or by natural anaerobic digestion in the engineered landfill. At the landfill sites the gas produced by the natural decomposition of MSW (approximately 50% methane and 50% carbon dioxide) is collected from the stored material and scrubbed and cleaned before feeding into internal combustion engines or gas turbines to generate heat and power. The organic fraction of MSW can be anaerobically stabilized in a high-rate digester to obtain biogas for electricity or steam generation.
Sewage is a source of biomass energy that is very similar to the other animal wastes. Energy can be extracted from sewage using anaerobic digestion to produce biogas. The sewage sludge that remains can be incinerated or undergo pyrolysis to produce more biogas.
First-generation biofuels (produced primarily from food crops such as grains, sugar beet and oil seeds) are limited in their ability to achieve targets for oil-product substitution, climate change mitigation, and economic growth. Their sustainable production is under scanner, as is the possibility of creating undue competition for land and water used for food and fibre production.
The cumulative impacts of these concerns have increased the interest in developing biofuels produced from non-food biomass. Feedstocks from ligno-cellulosic materials include cereal straw, bagasse, forest residues, and purpose-grown energy crops such as vegetative grasses and short rotation forests. These second-generation biofuels could avoid many of the concerns facing first-generation biofuels and potentially offer greater cost reduction potential in the longer term.
The largest potential feedstock for ethanol is lignocellulosic biomass, which includes materials such as agricultural residues (corn stover, crop straws and bagasse), herbaceous crops (alfalfa, switchgrass), short rotation woody crops, forestry residues, waste paper and other wastes (municipal and industrial). Bioethanol production from these feedstocks could be an attractive alternative for disposal of these residues. Importantly, lignocellulosic feedstocks do not interfere with food security. Moreover, bioethanol is very important for both rural and urban areas in terms of energy security reason, environmental concern, employment opportunities, agricultural development, foreign exchange saving, socioeconomic issues etc.
Economically, lignocellulosic biomass has an advantage over other agriculturally important biofuels feedstocks such as corn starch, soybeans, and sugar cane, because it can be produced quickly and at significantly lower cost than food crops. Lignocellulosic biomass is an important component of the major food crops; it is the non-edible portion of the plant, which is currently underutilized, but could be used for biofuel production. In short, lignocellulosic biomass holds the key to supplying society’s basic needs for sustainable production of liquid transportation fuels without impacting the nation’s food supply.
Biomass is the material derived from plants that use sunlight to grow which include plant and animal material such as wood from forests, material left over from agricultural and forestry processes, and organic industrial, human and animal wastes. Biomass comes from a variety of sources which include:
Wood from natural forests and woodlands
Forestry plantations
Forestry residues
Agricultural residues such as straw, stover, cane trash and green agricultural wastes
Agro-industrial wastes, such as sugarcane bagasse and rice husk
Animal wastes
Industrial wastes, such as black liquor from paper manufacturing
Sewage
Municipal solid wastes (MSW)
Food processing wastes
In nature, if biomass is left lying around on the ground it will break down over a long period of time, releasing carbon dioxide and its store of energy slowly. By burning biomass its store of energy is released quickly and often in a useful way. So converting biomass into useful energy imitates the natural processes but at a faster rate.
Biomass wastes can be transformed into clean energy and/or fuels by a variety of technologies, ranging from conventional combustion process to state-of-the art thermal depolymerization technology. Besides recovery of substantial energy, these technologies can lead to a substantial reduction in the overall waste quantities requiring final disposal, which can be better managed for safe disposal in a controlled manner while meeting the pollution control standards.
Biomass waste-to-energy conversion reduces greenhouse gas emissions in two ways. Heat and electrical energy is generated which reduces the dependence on power plants based on fossil fuels. The greenhouse gas emissions are significantly reduced by preventing methane emissions from landfills. Moreover, waste-to-energy plants are highly efficient in harnessing the untapped sources of energy from wastes.
This article makes an attempt at collating some of the most prominent issues associated with biomass technologies and provides plausible solutions in order to seek further promotion of these technologies.The solutions provided below are based on author’s understanding and experience in this field.
Large Project Costs: The project costs are to a great extent comparable to these technologies which actually justify the cause. Also, people tend to ignore the fact, that most of these plants, if run at maximum capacity could generate a Plant Load Factor (PLF) of 80% and above. This figure is about 2-3 times higher than what its counterparts wind and solar energy based plants could provide. This however, comes at a cost – higher operational costs.
Technologies have lower efficiencies: The solution to this problem, calls for innovativeness in the employment of these technologies. To give an example, one of the paper mill owners in India, had a brilliant idea to utilize his industrial waste to generate power and recover the waste heat to produce steam for his boilers. The power generated was way more than he required for captive utilization. With the rest, he melts scrap metal in an arc and generates additional revenue by selling it. Although such solutions are not possible in each case, one needs to possess the acumen to look around and innovate – the best means to improve the productivity with regards to these technologies.
Technologies still lack maturity: One needs to look beyond what is directly visible. There is a humongous scope of employment of these technologies for decentralized power generation. With regards to scale, few companies have already begun conceptualizing ultra-mega scale power plants based on biomass resources. Power developers and critics need to take a leaf out of these experiences.
Lack of funding options: The most essential aspect of any biomass energy project is the resource assessment. Investors if approached with a reliable resource assessment report could help regain their interest in such projects. Moreover, the project developers also need to look into community based ownership models, which have proven to be a great success, especially in rural areas. The project developer needs to not only assess the resource availability but also its alternative utilization means. It has been observed that if a project is designed by considering only 10-12% of the actual biomass to be available for power generation, it sustains without any hurdles.
Non-Transparent Trade markets: Most countries still lack a common platform to the buyers and sellers of biomass resources. As a result of this, their price varies from vendor to vendor even when considering the same feedstock. Entrepreneurs need to come forward and look forward to exploiting this opportunity, which could not only bridge the big missing link in the resource supply chain but also could transform into a multi-billion dollar opportunity.
High Risks / Low pay-backs: Biomass energy plants are plagued by numerous uncertainties including fuel price escalation and unreliable resource supply to name just a few. Project owners should consider other opportunities to increase their profit margins. One of these could very well include tying up with the power exchanges as is the case in India, which could offer better prices for the power that is sold at peak hour slots. The developer may also consider the option of merchant sale to agencies which are either in need of a consistent power supply and are presently relying on expensive back-up means (oil/coal) or are looking forward to purchase “green power” to cater to their Corporate Social Responsibility (CSR) initiatives.
Resource Price escalation: A study of some of the successful biomass energy plants globally would result in the conclusion of the inevitability of having own resource base to cater to the plant requirements. This could be through captive forestry or energy plantations at waste lands or fallow lands surrounding the plant site. Although, this could escalate the initial project costs, it would prove to be a great cushion to the plants operational costs in the longer run. In cases where it is not possible to go for such an alternative, one must seek case-specific procurement models, consider help from local NGOs, civic bodies etc. and go for long-term contracts with the resource providers.
Contributed by Mr. Setu Goyal (TERI University, New Delhi) who can be reached at setu.goyal@gmail.com
The issues enumerated below are not geography-specific and are usually a matter of concern for most of the biomass energy projects:
Large Project Costs: In India, a 1 MW gasification plant usually costs about USD 1-1.5 million. A combustion-based 1 MW plant would need a little more expenditure, to the tune of USD 1-2 million. An anaerobic digestion-based plant of the same capacity, on the other hand, could range anywhere upwards USD 3 million. Such high capital costs prove to be a big hurdle for any entrepreneur or clean-tech enthusiast to come forward and invest into these technologies.
Low Conversion Efficiencies: In general, efficiencies of combustion-based systems are in the range of 20-25% and gasification-based systems are considered even poorer, with their efficiencies being in the range of a measly10-15%. The biomass resources themselves are low in energy density, and such poor system efficiencies could add a double blow to the entire project.
Dearth of Mature Technologies: Poor efficiencies call for a larger quantum of resources needed to generate a unit amount of energy. Owing to this reason, investors and project developers find it hard to go for such plants on a larger scale. Moreover, the availability of only a few reliable technology and operation & maintenance service providers makes these technologies further undesirable. Gasification technology is still limited to scales lesser than 1 MW in most parts of the world. Combustion-based systems have although gone upwards of 1 MW, a lot many are now facing hurdles because of factors like unreliable resource chain, grid availability, and many others.
Lack of Funding Options: Financing agencies usually give a tough time to biomass project developers as compared to what it takes to invest in other renewable energy technologies.
Non-Transparent Trade Markets: Usually, the biomass energy resources are obtained through forests, farms, industries, animal farms etc. There is no standard pricing mechanism for such resources and these usually vary from vendor to vendor, even with the same resource in consideration.
High Risks / Low Pay-Backs: Biomass energy projects are not much sought-after owing to high project risks which could entail from failed crops, natural disasters, local disturbances, etc.
Resource Price Escalation: Unrealistic fuel price escalation too is a major cause of worry for the plant owners. Usually, an escalation of 3-5% is considered while carrying out the project’s financial modelling. However, it has been observed that in some cases, the rise has been as staggering as 15-20% per annum, forcing the plants to shut down.
Contributed by Setu Goyal, TERI University (New Delhi) who can be reached at setu.goyal@gmail.com)