Peat as Biomass Fuel

Upon drying, peat can be used as a fuel. It has industrial importance as a fuel in some countries, such as Ireland and Finland, where it is harvested on an industrial scale. In many countries, including Ireland and Scotland, where trees are often scarce, peat is traditionally used for cooking and domestic heating.

In Ireland, large-scale domestic and industrial peat usage is widespread. Specifically in the Republic of Ireland, a state-owned company called Bord na Móna is responsible for managing peat production. It produces milled peat which is used in power stations. It sells processed peat fuel in the form of peat briquettes which are used for domestic heating. These are oblong bars of densely compressed, dried and shredded peat. Briquettes are largely smokeless when burned in domestic fireplaces and as such are widely used in Irish towns and cities where burning non-smokeless coal is banned.

In Finland, peat (often mixed with wood at an average of 2.6%) is burned in order to produce heat and electricity. Peat provides approximately 6.2% of Finland’s annual energy production, second only to Ireland. Finland classifies peat as a slowly renewing biomass fuel.

Waste-to-Energy Conversion Pathways

The conversion of organic waste material to energy can proceed along three main pathways – thermochemical, biochemical and physicochemical. Thermochemical conversion, characterized by higher temperature and conversion rates, is best suited for lower moisture feedstock and is generally less selective for products.

Thermochemical conversion includes incineration, pyrolysis and gasification. The incineration technology is the controlled combustion of waste with the recovery of heat to produce steam which in turn produces power through steam turbines. Pyrolysis and gasification represent refined thermal treatment methods as alternatives to incineration and are characterized by the transformation of the waste into product gas as energy carrier for later combustion in, for example, a boiler or a gas engine.

Bio-chemical conversion processes, which include anaerobic digestion and fermentation, are preferred for wastes having high percentage of organic biodegradable (putrescible) matter and high moisture content. Anaerobic digestion is a biological treatment method that can be used to recover both nutrients and energy contained in organic wastes such as animal manure. The process generates gases with a high content of methane (55–70 %) as well as biofertilizer. Alcohol fermentation is the transformation of organic fraction of waste to ethanol by a series of biochemical reactions using specialized microorganisms.

The physico-chemical technology involves various processes to improve physical and chemical properties of solid waste. The combustible fraction of the waste is converted into high-energy fuel pellets which may be used in steam generation. The waste is first dried to bring down the high moisture levels. Sand, grit, and other incombustible matter were then mechanically separated before the waste is compacted and converted into pellets. Fuel pellets have several distinct advantages over coal and wood because it is cleaner, free from incombustibles, has lower ash and moisture contents, is of uniform size, cost-effective, and eco-friendly.

Importance of Waste-to-Energy Plants

Waste-to-energy plants offer two important benefits of environmentally safe waste management and disposal, as well as the generation of clean electric power. Waste-to-energy facilities produce clean, renewable energy through thermal, biochemical and physicochemical methods. The growing use of waste-to-energy as a method to dispose off solid and liquid wastes and generate power has greatly reduced environmental impacts of municipal solid waste management, including emissions of greenhouse gases.

Waste-to-energy conversion reduces greenhouse gas emissions in two ways. Electricity is generated which reduces the dependence on electrical production from power plants based on fossil fuels. The greenhouse gas emissions are significantly reduced by preventing methane emissions from landfills. Moreover, waste-to-energy plants are highly efficient in harnessing the untapped sources of energy from a variety of wastes.

An environmentally sound and techno-economically viable methodology to treat biodegradable waste is highly crucial for the sustainability of\ modern societies. A transition from conventional energy systems to one based on renewable resources is necessary to meet the ever-increasing demand for energy and to address environmental concerns.