In Denmark the world’s first biomass-based plant to produce a sustainable marine fuel

It will be a major achievement to use waste materials from forestry or paper-pulp industry to produce something which will certainly be a part of the transformation of the marine sector a more sustainable operation.

IL BIOECONOMISTA

The Port of Frederikshavn, in Denmark, and Steeper Energy, a Danish specialist energy project and technology development company , along with Aalborg University has entered into a partnership to establish the world’s first biomass-based plant to produce a sustainable marine fuel. The plant will produce sulphur-free fully renewable fuel for the several thousand vessels passing through the port annually. A new zero-tolerance law on sulphur content as well as the general acceptance that every part of society must do its part for climate change are the keys for success, according to the consortium.

View original post 657 more words

Advertisement

Sweet sorghum even sweeter when grown in partnership

Sweet sorghum has great potential as an energy crop for first generation ethanol production, without the risk of compromising food security. These sorghums produce grain in addition to the sugar- rich stalks and are less demanding in water and fertility needs compared to other energy crops (sugar cane and maize). The leaves and bagasse (crushed cane) are rich sources of fodder for animals.

The FARA Social Reporters Blog

Sorghum production by a farmer association in collaboration with Malibiocarburant and ICRISAT in Mali.

Sweet sorghum could be one of the key crops to stave off the threats to food and energy insecurity due to climate change. A private-public partnership initiative piloted by Malibiocarburant and the International Crop Research Insitute for the Semi-Arids Tropics (ICRISAT), Malian farmers lead the way in integrating improved sweet sorghum into their traditional production system in West and Central Africa.

The partnership has initiated the development of a sweet sorghum value-chain model focusing on integrated energy production by small-scale sorghum growers and livestock holders for local markets. The first phase will see sweet sorghum used to produce grain for human consumption, as well as fodder from the sweet stems, and later even bioethanol from the extracted juice–food and energy all in one crop.

View original post 535 more words

Biogas potential in Pakistan

There are 30,000 large farms in Pakistan employing more than 50 cattle and 18000 farms rearing 200 cattle per farm on the average. Large Farms and cattle owners can produce electricity for others and sell it to the grid. A farm having 1000 cattle can generate 0.5 MW of electricity and a farm of 2000 cattle can generate 1 MW. One can reasonably assume that 1000 such farms can be marshaled to provide atleast 1000 MW, against a total potential of 3800 MW.

Agriculture Information Bank

.

Table: Biogas Potential in Pakistan

====================================================

No of Livestock=56.9 Million

Live stock Biomass generation=1 Mn Tons/day

Number of Large Dairy Farms=30,000 (avg 200 Cattles)

MSW =55000 tons/day

Crop residue= 225000 tons/day

Annual Biogas (Bio-methane) potential=1.6 TCF/yr

Pakistan Ngas Production=1.4 TCF/yr

Existing Short Fall= 1 TCF/yr

CNG consumption=0.164 TCF/yr

LNG projects =0.146 TCF/yr (25 Billion USD imports)

OR Electricity Potential from Biogas =3800 MW

—————————————————-

Source: Author’s Estimates

=============================
DAIRY FARM HERD SIZE AND BIOGAS & ELECTRICITY OUTPUT
========================================================
No  of animals    Gas out put   Tot.Gas   Tot.Electr    Power    Profit
number            CM/animal/d   Mbtu/yr     kWh/yr       KW       Rs/yr
========================================================
5000                  2.4       147000     14700000     2940   14700000
3000                  2.4        88200      8820000     1764    8820000
2000                  2.4        58800      5880000     1176    5880000
1000                  2.4        29400      2940000      588    2940000
500                   2.4        14700      1470000      294    1470000
200                   2.4        5880       588000      117.6    588000
======================================================

Source: http://www.brecorder.com

View original post

The viability of aviation biofuels: new results from Australia

The work involved detailed techno-economic modelling of the processes to convert three feedstocks – sucrose from sugar cane; microalgae; and oily seeds from a tree called Pongamia – to produce a minimum selling price for aviation biofuel. The results showed that using current proven technologies, the biofuels would be economically competitive with crude oil at a price per barrel of $301 (sugarcane), $374 (Pongamia seeds) and $1,343 (microalgae).

IL BIOECONOMISTA

Qantas AirlinesGround-breaking Australian research on the viability of aviation biofuels was released last Friday, at the culmination of almost three years of work by The University of Queensland, James Cook University, The Boeing Company, Virgin Australia, Mackay Sugar and IOR Energy.

The results of the unique study as part of the Queensland Sustainable Aviation Fuel Initiative have been published in the international journal Biofuels, Bioproducts and Biorefining and were presented at the Boeing-hosted Aero Environment Summit in Sydney.

Researchers at the Australian Institute for Bioengineering and Nanotechnology, based at The University of Queensland, looked at the engineering and associated financial viability of biofuel production.

View original post 545 more words

Carbon Dioxide Removal Can Lower Costs of Climate Protection

Options for carbon dioxide removal from the atmosphere include afforestation and chemical approaches like direct air capture of CO2 from the atmosphere or reactions of CO2 with minerals to form carbonates. But the use of biomass for energy generation combined with carbon capture and storage is less costly than chemical options, as long as sufficient biomass feedstock is available, the scientists point out.

After Big Bang

Directly removing CO2 from the air has the potential to alter the costs of climate change mitigation. It could allow prolonging greenhouse-gas emissions from sectors like transport that are difficult, thus expensive, to turn away from using fossil fuels. And it may help to constrain the financial burden on future generations, a study now published by the Potsdam Institute for Climate Impact Research (PIK) shows. It focuses on the use of biomass for energy generation, combined with carbon capture and storage (CCS). According to the analysis, carbon dioxide removal could be used under certain requirements to alleviate the most costly components of mitigation, but it would not replace the bulk of actual emissions reductions.

“Carbon dioxide removal from the atmosphere allows to separate emissions control from the time and location of the actual emissions. This flexibility can be important for climate protection,” says lead-author Elmar Kriegler. “You don’t have…

View original post 616 more words

Focus on Wood-based Bioenergy

the benefits of wood-based bioenergy all depend on what is harvested, where it is harvested from, how it is harvested, how it is transported, how it is utilized as an energy source, the time horizon considered, and the alternative fate of the feedstock material. An energy portfolio that includes wood-based bioenergy is a better long-term strategy than other viable alternatives.

Much of our nation’s energy (both liquid transportation fuels and electric power) is derived from “fossil fuels,” which include oil, coal, and natural gas.

There are several drawbacks to these energy sources:

  • They are non-renewable resources. Once existing deposits are used up, they are gone. Through new technology we have gotten better at finding and accessing more of these deposits, which has kept supplies plentiful, but ultimately they are finite.
  • Their use converts carbon stored the earth to carbon dioxide which is released into the atmosphere. Rising concentrations of carbon dioxide in the atmosphere changes global climate, with a myriad of consequences.
  • Prices are unstable and usually climbing, impacting all areas of our lives and economy and our nation’s foreign policy.
  • Extraction (e.g. mining, offshore drilling, fracking, etc.) can harm the environment, especially if there is an accident.

The advantages of bioenergy is that it can be renewable, locally…

View original post 1,065 more words

Defending Biomass Energy

Energy and the Future

Tim Searchinger has a history of questioning assumptions and justifications put forward by proponents of biofuels.  His points are usually valid, or at least adds to the conversation.  In his latest article with Keith Smith in Global Change Biology, he questions two assumptions used in most lifecycle analyses (LCA) in regards to crop based biofuels.  These LCAs attempt to estimate or measure inputs and outputs from a system or process – in this case, the process of making bioenergy.  First, some basics: when plants grow they capture CO2.  When they are used for bioenergy, this CO2 is released again: this is net neutral CO2 (not including emissions from other aspects of growing and processing the plant).

” The problem is not that biofuels reduce GHG emissions, and land-use change increases them; the problem more accurately in such a case is that biofuels result in no positive land use or other market-based change that…

View original post 342 more words

Significance of Biorefineries

By Elton Alisson
Agência FAPESP – Biorefineries, as are called the industrial complexes that produce fuel, electricity and chemicals from biomass, are becoming enterprise capable of converting a wide variety of materials, including agricultural waste, into several products. This process with more energy efficient, economic and environmental benefits compared to conventional technological processes that give rise to only one or two products.
According to Jonas Contiero, a professor at Universidade Estadual Paulista (UNESP), Campus of Rio Claro, the first biorefineries plants were characterized by production of ethyl alcohol by grinding dry grains such as raw materials and have a line of fixed production , which consists of ethyl alcohol in co-products and carbon dioxide.
Later, began to emerge in second generation Biorefineries that use technology for grinding “wet”, which enables the production of various final products, depending on demand, using mainly grains as raw materials. There are currently undergoing research…

View original post 399 more words

Energy from Food Wastes

Jay F. Nelson

Animal waste may become our next source of green energy.

Private corporations in the U.K. have begun investing big bucks to convert leftover food and animal byproducts into a new source of green energy that produces electricity and cuts costs.

Marketplace BBC World Service recently reported that big U.K. chains such as Walmart and Tesco are now actively running some of their stores on electricity converted from leftover foods.

Fish heads, old lamb chops, stale sandwiches, and chicken fat represent just a few of the food waste products whose biogas can be burned to create electricity.

How do you get electricity from stale sandwiches?

Basically speaking, large vats of rotting organic waste ferment in the absence of oxygen in a kind of biogenic bath. Fermentation produces biogases, such as methane, which can be burned to run the machinery that generates green electricity. Anyone who’s kept a compost pile knows that…

View original post 240 more words

Biomass Energy Sector in India

Panchabuta-Renewable Energy & Cleantech in India

According to reports, Biomass power producers are in a quandary with input costs, operations and maintenance costs growing and tariff structure remaining stagnant, thereby making many projects across the country financially unviable.

The representative body of biomass producers, the Indian Biomass Power Association has written a letter to the Union Minister for New and Renewable Energy, Dr Farooq Abdullah, seeking his attention and intervention in addressing their concerns.

Nearly half of the installed capacity of 1,100 MW across several States is lying idle and there is demand-supply mismatch, according to Mr D. Radhakrishna, Secretary-General of IBPA.

Representatives of the association and biomass producers told Business Line that the situation needs to be addressed immediately as the recent requests made to the Central Electricity Regulatory Commission (CERC) have not been successful.

The producers use a wide range of agriculture waste such as rice and coconut husk and forest waste as…

View original post 240 more words

Introduction to POME

Pure palm oil - production from rural Jukwa vi...
Image via Wikipedia

Palm Oil processing gives rise to highly polluting waste-water, known as Palm Oil Mill Effluent (POME), which is often discarded in disposal ponds, resulting in the leaching of contaminants that pollute the groundwater and soil, and in the release of methane gas into the atmosphere. POME is an oily wastewater generated by palm oil processing mills and consists of various suspended components. This liquid waste combined with the wastes from steriliser condensate and cooling water is called palm oil mill effluent (POME). On average, for each ton of FFB (fresh fruit bunches) processed, a standard palm oil mill generate about 1 tonne of liquid waste with biochemical oxygen demand (BOD) 27 kg, chemical oxygen demand (COD) 62 kg, suspended solids (SS) 35 kg and oil and grease 6 kg

POME has a very high Biochemical Oxygen Demand (BOD) and Chemical Oxygen Demand (COD), which is 100 times more than the municipal sewage. POME is a non-toxic waste, as no chemical is added during the oil extraction process, but will pose environmental issues due to large oxygen depleting capability in aquatic system due to organic and nutrient contents. The high organic matter is due to the presence of different sugars such as arabinose, xylose, glucose, galactose and manose. The suspended solids in the POME are mainly oil-bearing cellulosic materials from the fruits. Since the POME is non-toxic as no chemical is added in the oil extraction process, it is a good source of nutrients for microorganisms.

Currently, recovery of renewable organic-based product is a new approach in managing POME. The technology is aimed to recover by-products such as volatile fatty acid, biogas and poly-hydroxyalkanoates to promote sustainability of the palm oil industry. In addition, it is envisaged that POME can be sustainably reused as a fermentation substrate in production of various metabolites through biotechnological advances. In addition, POME consists of high organic acids and is suitable to be used as a carbon source

Anaerobic digestion is widely adopted in the industry as a primary treatment for POME. Biogas is produced in the process in the amount of 20 m3per ton FFB. This effluent could be used for biogas production through anaerobic digestion. At many Palm-oil mills this process is already in place to meet water quality standards for industrial effluent. The gas, however, is flared off. Liquid effluents from Palm Oil mills in Southeast Asia can be used to generate power through gas turbines or gas-fired engines.

Enhanced by Zemanta

Biomass Energy Resources in Indonesia

With Indonesia’s recovery from the Asian financial crisis of 1998, energy consumption has grown rapidly in past decade. The priority of the Indonesian energy policy is to reduce oil consumption and to use renewable energy. For power generation, it is important to increase electricity power in order to meet national demand and to change fossil fuel consumption by utilization of biomass wastes. The development of renewable energy is one of priority targets in Indonesia.

It is estimated that Indonesia produces 146.7 million tons of biomass per year, equivalent to about 470 GJ/y. The source of biomass energy is scattered all over the country, but the big potential in concentrated scale can be found in the Island of Kalimantan, Sumatera, Irian Jaya and Sulawesi. Studies estimate the electricity generation potential from the roughly 150 Mt of biomass residues produced per year to be about 50 GW or equivalent to roughly 470 GJ/year. These studies assume that the main source of biomass energy in Indonesia will be rice residues with a technical energy potential of 150 GJ/year. Other potential biomass sources are rubber wood residues (120 GJ/year), sugar mill residues (78 GJ/year), palm oil residues (67 GJ/year), and less than 20 GJ/year in total from plywood and veneer residues, logging residues, sawn timber residues, coconut residues, and other agricultural wastes.

Sustainable and renewable natural resources such as biomass can supply potential raw materials for energy conversion. In Indonesia, they comprise variable-sized wood from forests (i.e. natural forests, plantations and community forests that commonly produce small-diameter logs used as firewood by local people), woody residues from logging and wood industries, oil-palm shell waste from crude palm oil factories, coconut shell wastes from coconut plantations, as well as skimmed coconut oil and straw from rice cultivation.

The major crop residues to be considered for power generation in Indonesia are palm oil sugar processing and rice processing residues. Currently, 67 sugar mills are in operation in Indonesia and eight more are under construction or planned. The mills range in size of milling capacity from less than 1,000 tons of cane per day to 12,000 tons of cane per day. Current sugar processing in Indonesia produces 8 millions MT bagasse and 11.5 millions MT canes top and leaves. There are 39 palm oil plantations and mills currently operating in Indonesia, and at least eight new plantations are under construction. Most palm oil mills generate combined heat and power from fibres and shells, making the operations energy self –efficient. However, the use of palm oil residues can still be optimized in more energy efficient systems.

Other potential source of biomass energy can also come from municipal wastes. The quantity of city or municipal wastes in Indonesia is comparable with other big cities of the world. Most of these wastes are originated from household in the form of organic wastes from the kitchen. At present the wastes are either burned at each household or collected by the municipalities and later to be dumped into a designated dumping ground or landfill. Although the government is providing facilities to collect and clean all these wastes, however, due to the increasing number of populations coupled with inadequate number of waste treatment facilities in addition to inadequate amount of allocated budget for waste management, most of big cities in Indonesia had been suffering from the increasing problem of waste disposals.

The current pressure for cost savings and competitiveness in Indonesia’s most important biomass-based industries, along with the continually growing power demands of the country signal opportunities for increased exploitation of biomass wastes for power generation.

Enhanced by Zemanta