Introduction to POME

Pure palm oil - production from rural Jukwa vi...
Image via Wikipedia

Palm Oil processing gives rise to highly polluting waste-water, known as Palm Oil Mill Effluent (POME), which is often discarded in disposal ponds, resulting in the leaching of contaminants that pollute the groundwater and soil, and in the release of methane gas into the atmosphere. POME is an oily wastewater generated by palm oil processing mills and consists of various suspended components. This liquid waste combined with the wastes from steriliser condensate and cooling water is called palm oil mill effluent (POME). On average, for each ton of FFB (fresh fruit bunches) processed, a standard palm oil mill generate about 1 tonne of liquid waste with biochemical oxygen demand (BOD) 27 kg, chemical oxygen demand (COD) 62 kg, suspended solids (SS) 35 kg and oil and grease 6 kg

POME has a very high Biochemical Oxygen Demand (BOD) and Chemical Oxygen Demand (COD), which is 100 times more than the municipal sewage. POME is a non-toxic waste, as no chemical is added during the oil extraction process, but will pose environmental issues due to large oxygen depleting capability in aquatic system due to organic and nutrient contents. The high organic matter is due to the presence of different sugars such as arabinose, xylose, glucose, galactose and manose. The suspended solids in the POME are mainly oil-bearing cellulosic materials from the fruits. Since the POME is non-toxic as no chemical is added in the oil extraction process, it is a good source of nutrients for microorganisms.

Currently, recovery of renewable organic-based product is a new approach in managing POME. The technology is aimed to recover by-products such as volatile fatty acid, biogas and poly-hydroxyalkanoates to promote sustainability of the palm oil industry. In addition, it is envisaged that POME can be sustainably reused as a fermentation substrate in production of various metabolites through biotechnological advances. In addition, POME consists of high organic acids and is suitable to be used as a carbon source

Anaerobic digestion is widely adopted in the industry as a primary treatment for POME. Biogas is produced in the process in the amount of 20 m3per ton FFB. This effluent could be used for biogas production through anaerobic digestion. At many Palm-oil mills this process is already in place to meet water quality standards for industrial effluent. The gas, however, is flared off. Liquid effluents from Palm Oil mills in Southeast Asia can be used to generate power through gas turbines or gas-fired engines.

Enhanced by Zemanta
Advertisements

Biomass Energy Developments in Jordan

The location of Municipality of Greater Amman ...
Image via Wikipedia

Renewable energy systems have been used in Jordan since early 1970s. Infact, Jordan has been a pioneer in renewable energy promotion in the Middle East with its first wind power pilot project in Al-Ibrahemiya as early as 1988. Systematic monitoring of the technological developments and implementation/execution of demonstration and pilot projects has been the hallmark of Jordan’s foray into clean energy sector.

Municipal solid wastes represent the best source of biomass in Jordan. In terms of quantity per capita and constituents, the waste generated in Jordan is comparable to most semi-industrialized nations. The per capita of waste generated in Jordan is about 0.9 kg/day. The total generation of municipal waste in Jordan is estimated at 1.84 million tons per year. The main resources of organic waste in Jordan that can be potentially used to produce biogas are summarized as follows:

  • Municipal waste from big cities
  • Organic wastes from slaughterhouse, vegetable market, hotels and restaurants.
  • Organic waste from agro-industries
  • Animal manure, mainly from cows and chickens.
  • Sewage sludge and septic.
  • Olive mills.
  • Organic industrial waste

According to a study conducted by the Greater Amman Municipality, around 1.5 million tonnes of organic waste was generated in Jordan in 2009. In addition, an annual amount of 1.83 million cubic meter of septic and sewage sludge from treatment of 44 million cubic meter of sewage water is generated in greater Amman area. The potential annual sewage sludge and septic generated in Amman can be estimated at 85,000 tons of dry matter.

The Government of Jordan, in collaboration with UNDP, GEF and the Danish Government, established 1MW Biomethanation plant at Rusaifeh landfill near Amman in 1999.  The Plant has been successfully operating since its commissioning and efforts are underway to increase its capacity to 5MW. Infact, the project has achieved net yearly profit from electricity sale of about US $ 100, 000.  The project consists of a system of twelve landfill gas wells and an anaerobic digestion plant based on 60 tons per day of organic wastes from hotels, restaurants and slaughterhouses in Amman. The successful installation of the biogas project has made it a role model in the entire region and several big cities are striving to replicate the model.

Enhanced by Zemanta

Biomass Energy and its Importance

Biomass can play a dual role in greenhouse gas mitigation related to the objectives of the UNFCCC, i.e. as an energy source to substitute for fossil fuels and as a carbon store. However, compared to the maintenance and enhancement of carbon sinks and reservoirs, it appears that the use of bioenergy has so far received less attention as a means of mitigating climate change. Modern bioenergy options offer significant, cost-effective and perpetual opportunities toward meeting emission reduction targets while providing additional ancillary benefits. Moreover, via the sustainable use of the accumulated carbon, bioenergy has the potential for resolving some of the critical issues surrounding long-term maintenance of biotic carbon stocks.

It has become clear that biomass can contribute substantially to GHG mitigation through both reductions of fossil carbon emissions and long-term storage of carbon in biomass. All forms of biomass utilization can be considered part of a closed carbon cycle. The mass of biospheric carbon involved in the global carbon cycle provides a scale for the potential of biomass mitigation options; whereas fossil fuel combustion accounts for some 6 Gigatons of carbon (GtC) release to the atmosphere annually, the net amount of carbon taken up from and released to the atmosphere by terrestrial plants is around 60 GtC annually (corresponding to a gross energy content of approximately 2100 EJ p.a., of which bioenergy is a part), and an estimated 600 GtC is stored in the terrestrial living biomass.