A race has begun from oil refineries to bio-refining

Innovation in Business, Energy, and Environment

By Maive Rute

When filling up a tank at the gas station, we are aware of consuming finite fossil fuel resources and contributing to greenhouse gases. However, when we buy another unnecessary, but nice plastic object not many of us think where this plastic comes from. Up to 15 % of oil imports to Europe go to the chemical industry and are converted into a broad range of products from lubricants to plastics and various other materials. Practically all the same products could be derived from biological renewable raw materials like energy crops, waste and various other types of biomass.

View original post 563 more words


New biorefinery finds treasure in Starbucks’ spent coffee grounds and stale bakery goods

Subject alerts

(American Chemical Society 20 August 2012) With 1.3 billion tons of food trashed, dumped in landfills and otherwise wasted around the world every year, scientists today described development and successful laboratory testing of a new “biorefinery” intended to change food waste into a key ingredient for making plastics, laundry detergents and scores of other everyday products. They described the research at the 244th National Meeting & Exposition of the American Chemical Society, the world’s largest scientific society.

Read EurekAlert Summary

View original post

Significance of Biorefineries

By Elton Alisson
Agência FAPESP – Biorefineries, as are called the industrial complexes that produce fuel, electricity and chemicals from biomass, are becoming enterprise capable of converting a wide variety of materials, including agricultural waste, into several products. This process with more energy efficient, economic and environmental benefits compared to conventional technological processes that give rise to only one or two products.
According to Jonas Contiero, a professor at Universidade Estadual Paulista (UNESP), Campus of Rio Claro, the first biorefineries plants were characterized by production of ethyl alcohol by grinding dry grains such as raw materials and have a line of fixed production , which consists of ethyl alcohol in co-products and carbon dioxide.
Later, began to emerge in second generation Biorefineries that use technology for grinding “wet”, which enables the production of various final products, depending on demand, using mainly grains as raw materials. There are currently undergoing research…

View original post 399 more words

Concept of Biorefinery

Description unavailable

A biorefinery is a facility that integrates biomass conversion processes and equipment to produce fuels, power, and value-added chemicals from biomass. The biorefinery concept is analogous to today’s petroleum refinery, which produces multiple fuels and products from petroleum.By producing several products, a biorefinery takes advantage of the various components in biomass and their intermediates, therefore maximizing the value derived from the biomass feedstock. A biorefinery could, for example, produce one or several low-volume, but high-value, chemical products and a low-value, but high-volume liquid transportation fuel such as biodiesel or bioethanol. At the same time, it can generate electricity and process heat, through CHP technology, for its own use and perhaps enough for sale of electricity to the local utility. The high value products increase profitability, the high-volume fuel helps meet energy needs, and the power production helps to lower energy costs and reduce GHG emissions from traditional power plant facilities.

There are several platforms which can be employed in biorefineries with the major ones being the sugar platform and the thermochemical platform (also known as syngas platform). Sugar platform biorefineries breaks down biomass into different types of component sugars for fermentation or other biological processing into various fuels and chemicals. On the other hand, thermochemical biorefineries transform biomass into synthesis gas (hydrogen and carbon monoxide) or pyrolysis oil.

The thermochemical biomass conversion process is complex, and uses components, configurations, and operating conditions that are more typical of petroleum refining. Biomass is converted into syngas, and syngas is converted into an ethanol-rich mixture. However, syngas created from biomass contains contaminants such as tar and sulphur that interfere with the conversion of the syngas into products. These contaminants can be removed by tar-reforming catalysts and catalytic reforming processes. This not only cleans the syngas, it also creates more of it, improving process economics and ultimately cutting the cost of the resulting ethanol.

Enhanced by Zemanta