How sustainable is biomass as a renewable energy source?

GMI Energy Expert

Researching the use of biomass in energy production I have found a lot of contention and passionate views on the sustainability of this energy source, particularly where large power stations including the likes of Drax are in the process of switching a significant proportion of their fuel to biomass. As always the situation is a lot more complex than it first appears…

Before we launch into the debate lets first take a look at what ‘biomass fuel’ encompasses and what makes it ‘renewable’

TreesBiomass can be extracted from a variety of sources including crop residues (straw etc.), woody biomass (sawdust etc.), urban waste (untreated wood and paper), forest residues, and short rotation (re-planted or coppiced forest). Some biomass can be directly burned to produce energy; some can be converted into another energy product like biofuel and some can be anaerobically digested to produce methane, which can then be burned to…

View original post 1,098 more words


Introduction to POME

Pure palm oil - production from rural Jukwa vi...
Image via Wikipedia

Palm Oil processing gives rise to highly polluting waste-water, known as Palm Oil Mill Effluent (POME), which is often discarded in disposal ponds, resulting in the leaching of contaminants that pollute the groundwater and soil, and in the release of methane gas into the atmosphere. POME is an oily wastewater generated by palm oil processing mills and consists of various suspended components. This liquid waste combined with the wastes from steriliser condensate and cooling water is called palm oil mill effluent (POME). On average, for each ton of FFB (fresh fruit bunches) processed, a standard palm oil mill generate about 1 tonne of liquid waste with biochemical oxygen demand (BOD) 27 kg, chemical oxygen demand (COD) 62 kg, suspended solids (SS) 35 kg and oil and grease 6 kg

POME has a very high Biochemical Oxygen Demand (BOD) and Chemical Oxygen Demand (COD), which is 100 times more than the municipal sewage. POME is a non-toxic waste, as no chemical is added during the oil extraction process, but will pose environmental issues due to large oxygen depleting capability in aquatic system due to organic and nutrient contents. The high organic matter is due to the presence of different sugars such as arabinose, xylose, glucose, galactose and manose. The suspended solids in the POME are mainly oil-bearing cellulosic materials from the fruits. Since the POME is non-toxic as no chemical is added in the oil extraction process, it is a good source of nutrients for microorganisms.

Currently, recovery of renewable organic-based product is a new approach in managing POME. The technology is aimed to recover by-products such as volatile fatty acid, biogas and poly-hydroxyalkanoates to promote sustainability of the palm oil industry. In addition, it is envisaged that POME can be sustainably reused as a fermentation substrate in production of various metabolites through biotechnological advances. In addition, POME consists of high organic acids and is suitable to be used as a carbon source

Anaerobic digestion is widely adopted in the industry as a primary treatment for POME. Biogas is produced in the process in the amount of 20 m3per ton FFB. This effluent could be used for biogas production through anaerobic digestion. At many Palm-oil mills this process is already in place to meet water quality standards for industrial effluent. The gas, however, is flared off. Liquid effluents from Palm Oil mills in Southeast Asia can be used to generate power through gas turbines or gas-fired engines.

Enhanced by Zemanta

Biomass Energy Developments in Jordan

The location of Municipality of Greater Amman ...
Image via Wikipedia

Renewable energy systems have been used in Jordan since early 1970s. Infact, Jordan has been a pioneer in renewable energy promotion in the Middle East with its first wind power pilot project in Al-Ibrahemiya as early as 1988. Systematic monitoring of the technological developments and implementation/execution of demonstration and pilot projects has been the hallmark of Jordan’s foray into clean energy sector.

Municipal solid wastes represent the best source of biomass in Jordan. In terms of quantity per capita and constituents, the waste generated in Jordan is comparable to most semi-industrialized nations. The per capita of waste generated in Jordan is about 0.9 kg/day. The total generation of municipal waste in Jordan is estimated at 1.84 million tons per year. The main resources of organic waste in Jordan that can be potentially used to produce biogas are summarized as follows:

  • Municipal waste from big cities
  • Organic wastes from slaughterhouse, vegetable market, hotels and restaurants.
  • Organic waste from agro-industries
  • Animal manure, mainly from cows and chickens.
  • Sewage sludge and septic.
  • Olive mills.
  • Organic industrial waste

According to a study conducted by the Greater Amman Municipality, around 1.5 million tonnes of organic waste was generated in Jordan in 2009. In addition, an annual amount of 1.83 million cubic meter of septic and sewage sludge from treatment of 44 million cubic meter of sewage water is generated in greater Amman area. The potential annual sewage sludge and septic generated in Amman can be estimated at 85,000 tons of dry matter.

The Government of Jordan, in collaboration with UNDP, GEF and the Danish Government, established 1MW Biomethanation plant at Rusaifeh landfill near Amman in 1999.  The Plant has been successfully operating since its commissioning and efforts are underway to increase its capacity to 5MW. Infact, the project has achieved net yearly profit from electricity sale of about US $ 100, 000.  The project consists of a system of twelve landfill gas wells and an anaerobic digestion plant based on 60 tons per day of organic wastes from hotels, restaurants and slaughterhouses in Amman. The successful installation of the biogas project has made it a role model in the entire region and several big cities are striving to replicate the model.

Enhanced by Zemanta

Production of Cellulosic Ethanol

The production of biofuels from lignocellulosic feedstocks can be achieved through two very different processing routes. They are:

  • Biochemical – in which enzymes and other micro-organisms are used to convert cellulose and hemicellulose components of the feedstocks to sugars prior to their fermentation to produce ethanol;
  • Thermo-chemical – where pyrolysis/gasification technologies produce a synthesis gas (CO + H2) from which a wide range of long carbon chain biofuels, such as synthetic diesel or aviation fuel, can be reformed.

Lignocellulosic biomass consists mainly of lignin and the polysaccharides cellulose and hemicellulose. Compared with the production of ethanol from first-generation feedstocks, the use of lignocellulosic biomass is more complicated because the polysaccharides are more stable and the pentose sugars are not readily fermentable by Saccharomyces cerevisiae. In order to convert lignocellulosic biomass to biofuels the polysaccharides must first be hydrolysed, or broken down, into simple sugars using either acid or enzymes. Several biotechnology-based approaches are being used to overcome such problems, including the development of strains of Saccharomyces cerevisiae that can ferment pentose sugars, the use of alternative yeast species that naturally ferment pentose sugars, and the engineering of enzymes that are able to break down cellulose and hemicellulose into simple sugars.

Lignocellulosic processing pilot plants have been established in the EU, in Denmark, Spain and Sweden. The world’s largest demonstration facility of lignocellulose ethanol (from wheat, barley straw and corn stover), with a capacity of 2.5 Ml, was first established by Iogen Corporation in Ottawa, Canada. Many other processing facilities are now in operation or planning throughout the world.

Ethanol from lignocellulosic biomass is produced mainly via biochemical routes. The three major steps involved are pretreatment, enzymatic hydrolysis, and fermentation as shown in Figure. Biomass is pretreated to improve the accessibility of enzymes. After pretreatment, biomass undergoes enzymatic hydrolysis for conversion of polysaccharides into monomer sugars, such as glucose and xylose. Subsequently, sugars are fermented to ethanol by the use of different microorganisms.

Pretreated biomass can directly be converted to ethanol by using the process called simultaneous saccharification and cofermentation (SSCF).  Pretreatment is a critical step which enhances the enzymatic hydrolysis of biomass. Basically, it alters the physical and chemical properties of biomass and improves the enzyme access and effectiveness which may also lead to a change in crystallinity and degree of polymerization of cellulose. The internal surface area and pore volume of pretreated biomass are increased which facilitates substantial improvement in accessibility of enzymes. The process also helps in enhancing the rate and yield of monomeric sugars during enzymatic hydrolysis steps.

Pretreatment methods can be broadly classified into four groups – physical, chemical, physio-chemical and biological. Physical pretreatment processes employ the mechanical comminution or irradiation processes to change only the physical characteristics of biomass. The physio-chemical process utilizes steam or steam and gases, like SO2 and CO2. The chemical processes employs acids (H2SO4, HCl, organic acids etc) or alkalis (NaOH, Na2CO3, Ca(OH)2, NH3 etc). The acid treatment typically shows the selectivity towards hydrolyzing the hemicelluloses components, whereas alkalis have better selectivity for the lignin. The fractionation of biomass components after such processes help in improving the enzymes accessibility which is also important to the efficient utilization of enzymes.

Presently, a ton of dry biomass typically yields 60-70 gallons of bioethanol. The major cost components in bioethanol production from lignocellulosic biomass are the pretreatment and the enzymatic hydrolysis steps. In fact, these two process are someway interrelated too where an efficient pretreatment strategy can save substantial enzyme consumption. Pretreatment step can also affect the cost of other operations such as size reduction prior to pretreatment. Therefore, optimization of these two important steps, which collectively contributes about 70% of the total processing cost, are the major challenges in the commercialization of bioethanol from 2nd generation feedstock.

Biomass Energy Resources in Philippines

Sugar cane residue can be used as a biofuel
Image via Wikipedia

Like any developing country, the Philippines is facing a formidable challenge of fostering sustainable energy options to support the energy requirements of its economic and social development goals with minimal adverse effects on the environment. In the Philippines, renewable energy sources contribute 43 percent to the country’s primary energy mix, one of the highest in Southeast Asia. The Philippines has an existing capacity of 5,500 MW of renewable energy power. Out of which, 61 percent is hydropower while 37 percent is geothermal power. Biomass energy application accounts for around 15 percent of the primary energy use in the country. The resources available in the Philippines can generate biomass projects with a potential capacity of around 200 MW.

The country has abundant supplies of biomass resources, offering much potential for clean energy generation.  These include agricultural crop residues, forest residues, animal wastes, agro-industrial wastes, municipal solid wastes and aquatic biomass. The most common agricultural wastes are rice hull, bagasse, coconut shell/husk and coconut coir. The use of crop residues as biofuels is increasing in the Philippines as fossil fuel prices continue to rise. Rice hull is perhaps the most important, underdeveloped biomass resource that could be fully utilized in a sustainable manner.

The Philippines is mainly an agricultural country with a land area of 30 million hectares, 47 percent of which is agricultural. The total area devoted to agricultural crops is 13 million hectares distributed among food grains, food crops and non-food crops. Among the crops grown, rice, coconut and sugarcane are major contributors to biomass energy resources. The most common agricultural residues are rice husk, rice straw, coconut husk, coconut shell and bagasse. The country has good potential for biomass power plants as one-third of the country’s agricultural land produces rice, and consequently large volumes of rice straw and hulls are generated.

Enhanced by Zemanta

Significance of Anaerobic Digestion of Food Waste

Photograph of anaerobic digesters, Tel-Aviv 20...
Image via Wikipedia

Anaerobic digestion is the most important method for the treatment of organic waste because of its techno-economic viability and environmental sustainability. The use of anaerobic digestion technology generates biogas and preserves the nutrients which are recycled back to the agricultural land in the form of slurry or solid fertilizer. The relevance of biogas technology lies in the fact that it makes the best possible utilization of various organic wastes as a renewable source of clean energy. A biogas plant is a decentralized energy system, which can lead to self-sufficiency in heat and power needs, and at the same time reduces environmental pollution. Thus, anaerobic digestion of food waste can lead to climate change mitigation, economic benefits and landfill diversion opportunities.

Of the different types of organic wastes available, food waste holds the highest potential in terms of economic exploitation as it contains high amount of carbon and can be efficiently converted into biogas and organic fertilizer. Food waste can either be utilized as a single substrate in a biogas plant, or can be co-digested with organic wastes like cow manure, poultry litter, sewage, crop residues, abattoir wastes etc.

Food waste is one of the single largest constituent of municipal solid waste stream.  Diversion of food waste from landfills can provide significant contribution towards climate change mitigation, apart from generating revenues and creating employment opportunities. Rising energy prices and increasing environmental pollution makes it more important to harness renewable energy from food wastes. Anaerobic digestion technology is widely available worldwide and successful projects are already in place in several European as well as Asian countries which makes it imperative on waste generators and environmental agencies to root for a sustainable food waste management system.

Enhanced by Zemanta

A Primer on Waste-to-Energy

NEW DELHI, INDIA - FEBRUARY 18: Indian workers...
Image by Getty Images via @daylife

Energy is the driving force for development in all countries of the world. The increasing clamor for energy and satisfying it with a combination of conventional and renewable resources is a big challenge. Accompanying energy problems in different parts of the world, another problem that is assuming critical proportions is that of urban waste accumulation. The quantity of waste produced all over the world amounted to more than 12 billion tonnes in 2006, with estimates of up to 13 billion tonnes in 2011. The rapid increase in population coupled with changing lifestyle and consumption patterns is expected to result in an exponential increase in waste generation of upto 18 billion tonnes by year 2020.

Waste generation rates are affected by socio-economic development, degree of industrialization, and climate. Generally, the greater the economic prosperity and the higher percentage of urban population, the greater the amount of solid waste produced. Reduction in the volume and mass of solid waste is a crucial issue especially in the light of limited availability of final disposal sites in many parts of the world. Millions of tonnes of waste are generated each year with the vast majority disposed of in open fields or burnt wantonly.

Waste-to-Energy (WTE) is the use of modern combustion and biochemical technologies to recover energy, usually in the form of electricity and steam, from urban wastes. These new technologies can reduce the volume of the original waste by 90%, depending upon composition and use of outputs. The main categories of waste-to-energy technologies are physical technologies, which process waste to make it more useful as fuel; thermal technologies, which can yield heat, fuel oil, or syngas from both organic and inorganic wastes; and biological technologies, in which bacterial fermentation is used to digest organic wastes to yield fuel. Waste-to-energy technologies can address a host of environmental issues, such as land use and pollution from landfills, and increasing reliance on fossil fuels.

Enhanced by Zemanta

A Glance at Biomass Resources

Manure, a field in Randers in Denmark
Image via Wikipedia

Biomass energy projects provide major business opportunities, environmental benefits, and rural development.  Feedstocks can be obtained from a wide array of sources without jeopardizing the food and feed supply, forests, and biodiversity in the world.

Agricultural Residues

Crop residues encompasses all agricultural wastes such as bagasse, straw, stem, stalk, leaves, husk, shell, peel, pulp, stubble, etc. Large quantities of crop residues are produced annually worldwide, and are vastly underutilised. Rice produces both straw and rice husks at the processing plant which can be conveniently and easily converted into energy. Significant quantities of biomass remain in the fields in the form of cob when maize is harvested which can be converted into energy. Sugar cane harvesting leads to harvest residues in the fields while processing produces fibrous bagasse, both of which are good sources of energy. Harvesting and processing of coconuts produces quantities of shell and fibre that can be utilized.

Current farming practice is usually to plough these residues back into the soil, or they are burnt, left to decompose, or grazed by cattle. These residues could be processed into liquid fuels or thermochemical processed to produce electricity and heat. Agricultural residues are characterized by seasonal availability and have characteristics that differ from other solid fuels such as wood, charcoal, char briquette. The main differences are the high content of volatile matter and lower density and burning time.

Animal Waste

There are a wide range of animal wastes that can be used as sources of biomass energy. The most common sources are animal and poultry manures. In the past this waste was recovered and sold as a fertilizer or simply spread onto agricultural land, but the introduction of tighter environmental controls on odour and water pollution means that some form of waste management is now required, which provides further incentives for waste-to-energy conversion.

The most attractive method of converting these waste materials to useful form is anaerobic digestion which gives biogas that can be used as a fuel for internal combustion engines, to generate electricity from small gas turbines, burnt directly for cooking, or for space and water heating.

Forestry Residues

Forestry residues are generated by operations such as thinning of plantations, clearing for logging roads, extracting stem-wood for pulp and timber, and natural attrition. Harvesting may occur as thinning in young stands, or cutting in older stands for timber or pulp that also yields tops and branches usable for biomass energy. Harvesting operations usually remove only 25 to 50 percent of the volume, leaving the residues available as biomass for energy.

Stands damaged by insects, disease or fire are additional sources of biomass. Forest residues normally have low density and fuel values that keep transport costs high, and so it is economical to reduce the biomass density in the forest itself.

Wood Wastes

Wood processing industries primarily include sawmilling, plywood, wood panel, furniture, building component, flooring, particle board, moulding, jointing and craft industries. Wood wastes generally are concentrated at the processing factories, e.g. plywood mills and sawmills. The amount of waste generated from wood processing industries varies from one type industry to another depending on the form of raw material and finished product.

Generally, the waste from wood industries such as saw millings and plywood, veneer and others are sawdust, off-cuts, trims and shavings. Sawdust arise from cutting, sizing, re-sawing, edging, while trims and shaving are the consequence of trimming and smoothing of wood. In general, processing of 1,000 kg of wood in the furniture industries will lead to waste generation of almost half (45 %), i.e. 450 kg of wood. Similarly, when processing 1,000 kg of wood in sawmill, the waste will amount to more than half (52 %), i.e. 520 kg wood.

Industrial Wastes

The food industry produces a large number of residues and by-products that can be used as biomass energy sources. These waste materials are generated from all sectors of the food industry with everything from meat production to confectionery producing waste that can be utilised as an energy source.

Solid wastes include peelings and scraps from fruit and vegetables, food that does not meet quality control standards, pulp and fibre from sugar and starch extraction, filter sludges and coffee grounds. These wastes are usually disposed of in landfill dumps.

Liquid wastes are generated by washing meat, fruit and vegetables, blanching fruit and vegetables, pre-cooking meats, poultry and fish, cleaning and processing operations as well as wine making.

These waste waters contain sugars, starches and other dissolved and solid organic matter. The potential exists for these industrial wastes to be anaerobically digested to produce biogas, or fermented to produce ethanol, and several commercial examples of waste-to-energy conversion already exist.

Pulp and paper industry is considered to be one of the highly polluting industries and consumes large amount of energy and water in various unit operations. The wastewater discharged by this industry is highly heterogeneous as it contains compounds from wood or other raw materials, processed chemicals as well as compound formed during processing.  Black liquor can be judiciously utilized for production of biogas using anaerobic UASB technology.

Municipal Solid Wastes and Sewage

Millions of tonnes of household waste are collected each year with the vast majority disposed of in open fields. The biomass resource in MSW comprises the putrescibles, paper and plastic and averages 80% of the total MSW collected. Municipal solid waste can be converted into energy by direct combustion, or by natural anaerobic digestion in the engineered landfill. At the landfill sites the gas produced by the natural decomposition of MSW (approximately 50% methane and 50% carbon dioxide) is collected from the stored material and scrubbed and cleaned before feeding into internal combustion engines or gas turbines to generate heat and power. The organic fraction of MSW can be anaerobically stabilized in a high-rate digester to obtain biogas for electricity or steam generation.

Sewage is a source of biomass energy that is very similar to the other animal wastes. Energy can be extracted from sewage using anaerobic digestion to produce biogas. The sewage sludge that remains can be incinerated or undergo pyrolysis to produce more biogas.

Enhanced by Zemanta

Lignocellulosic Biomass

Farmer plowing in Fahrenwalde, Mecklenburg-Vor...
Image via Wikipedia

First-generation biofuels (produced primarily from food crops such as grains, sugar beet and oil seeds) are limited in their ability to achieve targets for oil-product substitution, climate change mitigation, and economic growth. Their sustainable production is under scanner, as is the possibility of creating undue competition for land and water used for food and fibre production.

The cumulative impacts of these concerns have increased the interest in developing biofuels produced from non-food biomass. Feedstocks from ligno-cellulosic materials include cereal straw, bagasse, forest residues, and purpose-grown energy crops such as vegetative grasses and short rotation forests. These second-generation biofuels could avoid many of the concerns facing first-generation biofuels and potentially offer greater cost reduction potential in the longer term.

The largest potential feedstock for ethanol is lignocellulosic biomass, which includes materials such as agricultural residues (corn stover, crop straws and bagasse), herbaceous crops (alfalfa, switchgrass), short rotation woody crops, forestry residues, waste paper and other wastes (municipal and industrial). Bioethanol production from these feedstocks could be an attractive alternative for disposal of these residues. Importantlylignocellulosic feedstocks do not interfere with food security. Moreover, bioethanol is very important for both rural and urban areas in terms of energy security reason, environmental concern, employment opportunities, agricultural development, foreign exchange saving, socioeconomic issues etc.

Economically, lignocellulosic biomass has an advantage over other agriculturally important biofuels feedstocks such as corn starch, soybeans, and sugar cane, because it can be produced quickly and at significantly lower cost than food crops. Lignocellulosic biomass is an important component of the major food crops; it is the non-edible portion of the plant, which is currently underutilized, but could be used for biofuel production. In short, lignocellulosic biomass holds the key to supplying society’s basic needs for sustainable production of liquid transportation fuels without impacting the nation’s food supply.

Enhanced by Zemanta

Solutions for Major Issues arising in Biomass Energy Projects

This article makes an attempt at collating some of the most prominent issues associated with biomass technologies and provides plausible solutions in order to seek further promotion of these technologies. The solutions provided below are based on author’s understanding and experience in this field.

  1. Large Project Costs: The project costs are to a great extent comparable to these technologies which actually justify the cause. Also, people tend to ignore the fact, that most of these plants, if run at maximum capacity could generate a Plant Load Factor (PLF) of 80% and above. This figure is about 2-3 times higher than what its counterparts wind and solar energy based plants could provide. This however, comes at a cost – higher operational costs.
  2. Technologies have lower efficiencies: The solution to this problem, calls for innovativeness in the employment of these technologies. To give an example, one of the paper mill owners in India, had a brilliant idea to utilize his industrial waste to generate power and recover the waste heat to produce steam for his boilers. The power generated was way more than he required for captive utilization. With the rest, he melts scrap metal in an arc and generates additional revenue by selling it. Although such solutions are not possible in each case, one needs to possess the acumen to look around and innovate – the best means to improve the productivity with regards to these technologies.
  3. Technologies still lack maturity: One needs to look beyond what is directly visible. There is a humongous scope of employment of these technologies for decentralized power generation. With regards to scale, few companies have already begun conceptualizing ultra-mega scale power plants based on biomass resources. Power developers and critics need to take a leaf out of these experiences.
  4. Lack of funding options: The most essential aspect of any biomass energy project is the resource assessment. Investors if approached with a reliable resource assessment report could help regain their interest in such projects. Moreover, the project developers also need to look into community based ownership models, which have proven to be a great success, especially in rural areas. The project developer needs to not only assess the resource availability but also its alternative utilization means. It has been observed that if a project is designed by considering only 10-12% of the actual biomass to be available for power generation, it sustains without any hurdles.
  5. Non-Transparent Trade markets: Most countries still lack a common platform to the buyers and sellers of biomass resources. As a result of this, their price varies from vendor to vendor even when considering the same feedstock. Entrepreneurs need to come forward and look forward to exploiting this opportunity, which could not only bridge the big missing link in the resource supply chain but also could transform into a multi-billion dollar opportunity.
  6. High Risks / Low pay-backs: Biomass energy plants are plagued by numerous uncertainties including fuel price escalation and unreliable resource supply to name just a few. Project owners should consider other opportunities to increase their profit margins. One of these could very well include tying up with the power exchanges as is the case in India, which could offer better prices for the power that is sold at peak hour slots. The developer may also consider the option of merchant sale to agencies which are either in need of a consistent power supply and are presently relying on expensive back-up means (oil/coal) or are looking forward to purchase “green power” to cater to their Corporate Social Responsibility (CSR) initiatives.
  7. Resource Price escalation: A study of some of the successful biomass energy plants globally would result in the conclusion of the inevitability of having own resource base to cater to the plant requirements. This could be through captive forestry or energy plantations at waste lands or fallow lands surrounding the plant site. Although, this could escalate the initial project costs, it would prove to be a great cushion to the plants operational costs in the longer run. In cases where it is not possible to go for such an alternative, one must seek case-specific procurement models, consider help from local NGOs, civic bodies etc. and go for long-term contracts with the resource providers.

Contributed by Mr. Setu Goyal (TERI University, New Delhi) who can be reached at

Salman Zafar’s Articles in ISER

Renewable energy in South Africa

Issue 4 2010 / 13 December 2010 / Salman Zafar, Renewable Energy Advisor

South Africa, the most industrialised country in Africa, has a population of approximately 50 million living on a land area of 1.2 million km2. The country has large reserves of coal and uranium, and small reserves of crude oil and natural gas. Coal provides 75% of the fossil fuel demand and accounts for 91% of electricity generation. South Africa is enjoying sustained GDP growth of approximately 5% per annum. (more…)

Renewable Energy in Jordan

Issue 3 2010 / 14 October 2010 / Salman Zafar, Renewable Energy Advisor

The Hashemite Kingdom of Jordan is heavily dependent on oil imports from neighbouring countries to meet its energy requirements. The huge cost associated with energy imports creates a financial burden on the national economy and Jordan had to spend almost 20% of its GDP on the purchase of energy in 2008. Electricity demand is growing rapidly, and the Jordanian Government has been seeking ways to attract foreign investment to fund additional capacity. In 2008, the demand for electricity in Jordan was 2,260 MW, which is expected to rise to 5,770 MW by 2020. Therefore, provision of reliable and clean energy supply will play a vital role in Jordan’s economic growth.


Biomass energy resources in the MENA region

Issue 4 2009Past issues / 22 December 2009 / Salman Zafar, Renewable Energy Advisor

The high volatility in oil prices in the recent past and the resulting turbulence in energy markets has compelled many MENA countries, especially the non-oil producers, to look for alternate sources of energy, for both economic and environmental reasons. The significance of renewable energy has been increasing rapidly worldwide due to its potential to mitigate climate change, to foster sustainable development in poor communities and augment energy security and supply.

The major biomass producing MENA countries are Sudan, Egypt, Algeria, Yemen, Iraq, Syria and Jordan. Traditionally, biomass energy has been widely used in rural areas for domestic purposes in the MENA region. Since most of the region is arid/semi-arid, the biomass energy potential is mainly contributed by municipal solid wastes, agricultural residues and agro-industrial wastes.



African Development Bank (AfDB) and Clean Energy

The African Development Bank (AfDB) has supported its member countries in their energy development initiatives for more than four decades. With growing concerns about climate change, AfDB has identified a host of clean energy projects and programs in its pipeline for 2010-2014 to set Africa on a low carbon growth path and develop clean energy systems in the African continent. The AfDB’s Clean Energy Investment Framework aims at promoting sustainable development and contributing to global emissions reduction efforts by using a three-pronged approach: maximize clean energy options, emphasize energy efficiency and enable African countries to participate effectively in CDM sector.

The FINESSE Africa Program, financed by the Dutch Government, has been the mainstay of AfDB’s support of renewable energy and energy efficiency since 2004. FINESSE programme has been instrumental in developing a portfolio of sustainable energy projects for the Bank. In addition, the Bank’s Private Sector Department, with support from the Danish Renewable Energy Technical Assistance, has compiled a project pipeline comprised of small- to large-scale wind-power projects, mini, small and large hydro-power projects, cogeneration power projects, geothermal power projects and biodiesel projects across Africa. The AfDB’s interventions to support climate change mitigation in Africa are driven by sound policies and strategies and through its financing initiatives the Bank endeavors to become a major force in clean energy development in Africa.