Industrial Biomass and the Full Life Cycle of Carbon Emissions

The scramble to meet that 2020 target is creating a new sort of energy business. In the past, electricity from wood was a small-scale waste-recycling operation: Scandinavian pulp and paper mills would have a power station nearby which burned branches and sawdust. Later came co-firing, a marginal change.

The Carbon Times Blog


Which source of renewable energy is most important to the European Union? Solar power, perhaps? (Europe has three-quarters of the world’s total installed capacity of solar photovoltaic energy.) Or wind? (Germany trebled its wind-power capacity in the past decade.) The answer is neither. By far the largest so-called renewable fuel used in Europe is wood.

In its various forms, from sticks to pellets to sawdust, wood (or to use its fashionable name, biomass) accounts for about half of Europe’s renewable-energy consumption. In some countries, such as Poland and Finland, wood meets more than 80% of renewable-energy demand. Even in Germany, home of the Energiewende (energy transformation) which has poured huge subsidies into wind and solar power, 38% of non-fossil fuel consumption comes from the stuff. After years in which European governments have boasted about their high-tech, low-carbon energy revolution, the main beneficiary seems to be the favoured fuel of pre-industrial…

View original post 1,243 more words


Environmentally Confused – Burn or Recycle?

Sweden has had strict standards limiting emissions from waste incineration since the mid-1980s. Most emissions have fallen by between 90 and 99 per cent since then thanks to ongoing technical development and better waste sorting.

Journey of Mixed Emotions

The recycling movement in 1990s-era Vancouver started as a lukewarm way to protect the environment. Then the issues started heating up until it was a sizzling hot topic.

Everyone I knew became a star recycler. We learned how to sort properly, and although I did not always compost, I really tried to be environmentally responsible in other ways. Up until 2001, I was doing my undergraduate degree in biology and I felt it was my duty to understand the issues and be proactive.

In 2005 (give or take) I read Michael Crichton’s book State of Fear. Although there is controversy as to his thesis behind this fictional story, he had some great points about whether we were all jumping on the global warming bandwagon without all the facts. Almost 10 years later I still feel that way on a daily basis.

I am conditioned to recycle. I am often pulling…

View original post 312 more words

Biofuels – the good, the bad, and the dirty

The basic premise of biofuels is that they emit less carbon than traditional fossil fuels. When biofuels are burnt, the gases are less toxic than fossil fuels, the handling and storage is safer, and there is a carbon sequestration credit that occurs when growing crops for the use of biofuels

Environmental Folklore

We all know that driving our cars around town creates a lot of GHG emissions that are not helping the global warming crisis. We know that burning fossil fuels for transport energy contributes to pollution and climate change. But does buying ethanol or biodiesel to fuel our cars actually mitigate any of the carbon emissions? Or is this simply another way for fuel producers to scam extra dollars from the concerned citizen’s wallet?

As with all of the topics we will discuss on this website, there is no easy answer as to what is the most environmentally friendly option for fuelling our energy-intensive world. Certainly our transport system is fossil fuel intensive, and searching for new ways to reduce carbon emissions produced by this large system is a start to creating a world that is sustainable (whatever that means). But as the environmental blogger Damian Carrington states; “there are good…

View original post 908 more words

Defending Biomass Energy

Energy and the Future

Tim Searchinger has a history of questioning assumptions and justifications put forward by proponents of biofuels.  His points are usually valid, or at least adds to the conversation.  In his latest article with Keith Smith in Global Change Biology, he questions two assumptions used in most lifecycle analyses (LCA) in regards to crop based biofuels.  These LCAs attempt to estimate or measure inputs and outputs from a system or process – in this case, the process of making bioenergy.  First, some basics: when plants grow they capture CO2.  When they are used for bioenergy, this CO2 is released again: this is net neutral CO2 (not including emissions from other aspects of growing and processing the plant).

” The problem is not that biofuels reduce GHG emissions, and land-use change increases them; the problem more accurately in such a case is that biofuels result in no positive land use or other market-based change that…

View original post 342 more words

Composting Guidelines

VACAVILLE, CA - APRIL 20:  Birds fly over a co...
Image by Getty Images via @daylife

It seems everyone is concerned about the environment and trying to reduce their “carbon footprint”.  I hope this trend will continue and grow as a nationwide way to live and not turn into a fad.  Composting has been around for MANY years.  Composting is a great way to keep biodegradables out of the landfill and to reap the reward of some fabulous “black gold”.  That’s what master gardeners call compost and it’s great for improving your soil.  Plants love it.  Check out 10 Rules to Remember About Composting.

  1. Layer your compost bin with dry and fresh ingredients: The best way to start a compost pile is to make yourself a bin either with wood or chicken wire.  Layering fresh grass clippings and dried leaves is a great start.
  2. Remember to turn your compost pile: As the ingredients in your compost pile start to biodegrade they will start to get hot.  To avoid your compost pile rotting and stinking you need to turn the pile to aerate it.  This addition of air into the pile will speed up the decomposition.
  3. Add water to your compost pile: Adding water will also speed up the process of scraps turning into compost.  Don’t add too much water, but if you haven’t gotten any rain in a while it’s a good idea to add some water to the pile just to encourage it along.
  4. Don’t add meat scraps to your pile: Vegetable scraps are okay to add to your compost pile, but don’t add meat scraps.  Not only do they stink as they rot, but they will attract unwanted guests like raccoons that will get into your compost bin and make a mess of it.
  5. If possible have more than one pile going: Since it takes time for raw materials to turn into compost you may want to have multiple piles going at the same time.  Once you fill up the first bin start a second one and so on.  That way you can allow the ingredient in the first pile to completely transform into compost and still have a place to keep putting your new scraps and clippings.  This also allows you to always keep a supply of compost coming for different planting seasons.
  6. Never put trash in your compost pile: Just because something says that it is recyclable it doesn’t mean that it should necessarily go into the compost bin.  For example, newspapers will compost and can be put into a compost pile, but you will want to shred the newspapers and not just toss them in the bin in a stack.  Things like plastic and tin should not be put into a compost pile, but can be recycled in other ways.
  7. Allow your compost to complete the composting process before using: It might be tempting to use your new compost in your beds as soon as it starts looking like black soil, but you need to make sure that it’s completely done composting otherwise you could be adding weed seeds into your beds and you will not be happy with the extra weeds that will pop up.
  8. Straw can be added if dried leaves are not available: Dried materials as well as green materials need to be added to a compost bin.  In the Fall you will have a huge supply of dried leaves, but what do you do if you don’t have any dried leaves?  Add straw or hay to the compost bin, but again these will often contain weed seeds so be careful to make sure they are completely composted before using them.
  9. Egg Shells and Coffee grounds are a great addition: Not only potato skins are considered kitchen scraps.  Eggshells and coffee grounds are great additions to compost piles because they add nutrients that will enhance the quality of the end product.
  10. Never put pet droppings in your compost pile: I’m sure you’ve heard that manure is great for your garden, but cow manure is cured for quite a while before used in a garden.  Pet droppings are far to hot and acidic for a home compost pile and will just make it stink.

Contributed by Roxanne Porter whose original blogpost can be viewed at

Enhanced by Zemanta

Solutions for Major Issues arising in Biomass Energy Projects

This article makes an attempt at collating some of the most prominent issues associated with biomass technologies and provides plausible solutions in order to seek further promotion of these technologies. The solutions provided below are based on author’s understanding and experience in this field.

  1. Large Project Costs: The project costs are to a great extent comparable to these technologies which actually justify the cause. Also, people tend to ignore the fact, that most of these plants, if run at maximum capacity could generate a Plant Load Factor (PLF) of 80% and above. This figure is about 2-3 times higher than what its counterparts wind and solar energy based plants could provide. This however, comes at a cost – higher operational costs.
  2. Technologies have lower efficiencies: The solution to this problem, calls for innovativeness in the employment of these technologies. To give an example, one of the paper mill owners in India, had a brilliant idea to utilize his industrial waste to generate power and recover the waste heat to produce steam for his boilers. The power generated was way more than he required for captive utilization. With the rest, he melts scrap metal in an arc and generates additional revenue by selling it. Although such solutions are not possible in each case, one needs to possess the acumen to look around and innovate – the best means to improve the productivity with regards to these technologies.
  3. Technologies still lack maturity: One needs to look beyond what is directly visible. There is a humongous scope of employment of these technologies for decentralized power generation. With regards to scale, few companies have already begun conceptualizing ultra-mega scale power plants based on biomass resources. Power developers and critics need to take a leaf out of these experiences.
  4. Lack of funding options: The most essential aspect of any biomass energy project is the resource assessment. Investors if approached with a reliable resource assessment report could help regain their interest in such projects. Moreover, the project developers also need to look into community based ownership models, which have proven to be a great success, especially in rural areas. The project developer needs to not only assess the resource availability but also its alternative utilization means. It has been observed that if a project is designed by considering only 10-12% of the actual biomass to be available for power generation, it sustains without any hurdles.
  5. Non-Transparent Trade markets: Most countries still lack a common platform to the buyers and sellers of biomass resources. As a result of this, their price varies from vendor to vendor even when considering the same feedstock. Entrepreneurs need to come forward and look forward to exploiting this opportunity, which could not only bridge the big missing link in the resource supply chain but also could transform into a multi-billion dollar opportunity.
  6. High Risks / Low pay-backs: Biomass energy plants are plagued by numerous uncertainties including fuel price escalation and unreliable resource supply to name just a few. Project owners should consider other opportunities to increase their profit margins. One of these could very well include tying up with the power exchanges as is the case in India, which could offer better prices for the power that is sold at peak hour slots. The developer may also consider the option of merchant sale to agencies which are either in need of a consistent power supply and are presently relying on expensive back-up means (oil/coal) or are looking forward to purchase “green power” to cater to their Corporate Social Responsibility (CSR) initiatives.
  7. Resource Price escalation: A study of some of the successful biomass energy plants globally would result in the conclusion of the inevitability of having own resource base to cater to the plant requirements. This could be through captive forestry or energy plantations at waste lands or fallow lands surrounding the plant site. Although, this could escalate the initial project costs, it would prove to be a great cushion to the plants operational costs in the longer run. In cases where it is not possible to go for such an alternative, one must seek case-specific procurement models, consider help from local NGOs, civic bodies etc. and go for long-term contracts with the resource providers.

Contributed by Mr. Setu Goyal (TERI University, New Delhi) who can be reached at

Major Issues in Biomass Energy Projects

The issues enumerated below are not geography-specific and are usually a matter of concern for most of the biomass energy projects:

  1. Large Project Costs: In India, a 1 MW gasification plant usually costs about USD 1-1.5 million. A combustion-based 1 MW plant would need a little more expenditure, to the tune of USD 1-2 million. An anaerobic digestion-based plant of the same capacity, on the other hand, could range anywhere upwards USD 3 million. Such high capital costs prove to be a big hurdle for any entrepreneur or clean-tech enthusiast to come forward and invest into these technologies.
  2. Low Conversion Efficiencies: In general, efficiencies of combustion-based systems are in the range of 20-25% and gasification-based systems are considered even poorer, with their efficiencies being in the range of a measly10-15%. The biomass resources themselves are low in energy density, and such poor system efficiencies could add a double blow to the entire project.
  3. Dearth of Mature Technologies: Poor efficiencies call for a larger quantum of resources needed to generate a unit amount of energy. Owing to this reason, investors and project developers find it hard to go for such plants on a larger scale. Moreover, the availability of only a few reliable technology and operation & maintenance service providers makes these technologies further undesirable. Gasification technology is still limited to scales lesser than 1 MW in most parts of the world. Combustion-based systems have although gone upwards of 1 MW, a lot many are now facing hurdles because of factors like unreliable resource chain, grid availability, and many others.
  4. Lack of Funding Options: Financing agencies usually give a tough time to biomass project developers as compared to what it takes to invest in other renewable energy technologies.
  5. Non-Transparent Trade Markets: Usually, the biomass energy resources are obtained through forests, farms, industries, animal farms etc. There is no standard pricing mechanism for such resources and these usually vary from vendor to vendor, even with the same resource in consideration.
  6. High Risks / Low Pay-Backs: Biomass energy projects are not much sought-after owing to high project risks which could entail from failed crops, natural disasters, local disturbances, etc.
  7. Resource Price Escalation: Unrealistic fuel price escalation too is a major cause of worry for the plant owners. Usually, an escalation of 3-5% is considered while carrying out the project’s financial modelling. However, it has been observed that in some cases, the rise has been as staggering as 15-20% per annum, forcing the plants to shut down.

Contributed by Setu Goyal, TERI University (New Delhi) who can be reached at



Anaerobic Digestion of Tannery Wastes

Anaerobic digestion is a favorable technological solution which degrades a substantial part of the organic matter contained in the sludge and tannery solid wastes, generating valuable biogas, contributing to alleviate the environmental problem, giving time to set-up more sustainable treatment and disposal routes. Digested solid waste is biologically stabilized and can be reused in agriculture.

The application of an anaerobic treatment for the break down of COD from tannery waste water is an attractive method to recover energy from tannery wastewater. Until now it was considered that the complexity of the waste water stream originating from tanneries in combination with the presence of chroming would result in the poisoning of the process in a high loaded anaerobic reactor.

When the locally available industrial wastewater treatment plant is not provided by anaerobic digester, a large scale digestion can be planned in regions accommodating a big cluster of tanneries, if there is enough waste to make the facility economically attractive. In this circumstance, an anaerobic co-digestion plant based on sludge and tanneries may be a recommendable option, which reduces the quantity of landfilled waste and recovers its energy potential. It can also incorporate any other domestic, industrial or agricultural wastes. Chrome-free digested tannery sludge also has a definite value as a fertilizer based on its nutrient content.

Hydrogen Sulphide Removal from Biogas

Depending on the use of the biogas, most trace components must be removed from the biogas. Water vapour can be particularly hazardous because it is highly corrosive when combined with acidic components such as hydrogen sulfide and to a lesser extent, carbon dioxide. The major contaminant in biogas is H2S. This component is both poisonous and corrosive, and causes significant damage to piping, equipment and instrumentation.

The concentration of various components of biogas has an impact on its ultimate end use. While boilers can withstand concentrations of H2S up to 1000 ppm, and relatively low pressures, internal combustion engines operate best when H2S is maintained below 100 ppm.

Most commonly used methods for hydrogen sulphide removal are internal to the digestion process:

  • air/oxygen dosing to digester biogas and
  • iron chloride dosing to digester slurry.

Biological desulphurization

Desulphurization of biogas can be performed by micro-organisms. Most of the sulphide oxidising micro-organisms belong to the family of Thiobacillus. For the microbiological oxidation of sulphide it is essential to add stoichiometric amounts of oxygen to the biogas. Depending on the concentration of hydrogen sulphide this corresponds to 2 to 6 % air in biogas.

The simplest method of desulphurization is the addition of oxygen or air directly into the digester or in a storage tank serving at the same time as gas holder. Thiobacilli are ubiquitous and thus systems do not require inoculation. They grow on the surface of the digestate, which offers the necessary micro-aerophilic surface and at the same time the necessary nutrients. They form yellow clusters of sulphur. Depending on the temperature, the reaction time, the amount and place of the air added the hydrogen sulphide concentration can be reduced by 95 % to less than 50 ppm.

Measures of safety have to be taken to avoid overdosing of air in case of pump failures. Biogas in air is explosive in the range of 6 to 12 %, depending on the methane content). In steel digesters without rust protection there is a small risk of corrosion at the gas/liquid interface.

Iron chloride dosing to digester slurry

Iron chloride can be fed directly to the digester slurry or to the feed substrate in a pre-storage tank. Iron chloride then reacts with produced hydrogen sulphide and form iron sulphide salt (particles). This method is extremely effective in reducing high hydrogen sulphide levels but less effective in attaining a low and stable level of hydrogen sulphide in the range of vehicle fuel demands. In this respect the method with iron chloride dosing to digester slurry can only be regarded as a partial removal process in order to avoid corrosion in the rest of the upgrading process equipment. The method need to be complemented with a final removal down to about 10 ppm.

The investment cost for such a removal process is limited since the only investment needed is a storage tank for iron chloride solution and a dosing pump. On the other hand the operational cost will be high due to the prime cost for iron chloride.

Organic Waste Management

Most of the organic waste generated in developing countries is dumped into the landfills. It is a sheer waste of such biodegradable waste capable of generating energy to be sent into the landfills. There it is not only responsible for large scale green house gas emissions, but also becomes a health hazard and creates terrestrial pollution.

There are numerous places which are the sources of large amounts of food waste and hence a proper food-waste management strategy needs to be devised for them to make sure that either they are disposed off in a safe manner or utilized efficiently. These places include hotels, restaurants, malls, residential societies, college/school/office canteens, religious mass cooking places, airline caterers, food and meat processing industries and vegetable markets which generate organic waste of considerable quantum on a daily basis.

The anaerobic digestion technology is highly apt in dealing with the chronic problem of organic waste management in urban societies. Although the technology is commercially viable in the longer run, the high initial capital cost is a major hurdle towards its proliferation. The onus is on the governments to create awareness and promote such technologies in a sustainable manner. At the same time, entrepreneurs, non-governmental organizations and environmental agencies should also take inspiration from successful food waste-to-energy projects in other countries and try to set up such facilities in Indian cities and towns.

Contributed by Mr. Setu Goyal, TERI University, New Delhi

Woody Biomass Utilization and Sustainability

Harvesting practices remove only a small portion of branches and tops leaving sufficient biomass to conserve organic matter and nutrients. Moreover, the ash obtained after combustion of biomass compensates for nutrient losses by fertilizing the soil periodically in natural forests as well as fields. The impact of forest biomass utilization on the ecology and biodiversity has been found to be insignificant. Infact, forest residues are environmentally beneficial because of their potential to replace fossil fuels as an energy source.

Plantation of energy crops on abandoned agricultural land will lead to an increase in species diversity. The creation of structurally and species diverse forests helps in reducing the impacts of insects, diseases and weeds. Similarly the artificial creation of diversity is essential when genetically modified or genetically identical species are being planted. Short-rotation crops give higher yields than forests so smaller tracts are needed to produce biomass which results in the reduction of area under intensive forest management. An intelligent approach in forest management will go a long way in the realization of sustainability goals.

Improvements in agricultural practices promises to increased biomass yields, reductions in cultivation costs, and improved environmental quality. Extensive research in the fields of plant genetics, analytical techniques, remote sensing and geographic information systems (GIS) will immensely help in increasing the energy potential of biomass feedstock.

Bioenergy systems offer significant possibilities for reducing greenhouse gas emissions due to their immense potential to replace fossil fuels in energy production. Biomass reduces emissions and enhances carbon sequestration since short-rotation crops or forests established on abandoned agricultural land accumulate carbon in the soil. Bioenergy usually provides an irreversible mitigation effect by reducing carbon dioxide at source, but it may emit more carbon per unit of energy than fossil fuels unless biomass fuels are produced unsustainably.

Biomass can play a major role in reducing the reliance on fossil fuels by making use of thermo-chemical conversion technologies. In addition, the increased utilization of biomass-based fuels will be instrumental in safeguarding the environment, generation of new job opportunities, sustainable development and health improvements in rural areas. The development of efficient biomass handling technology, improvement of agro-forestry systems and establishment of small and large-scale biomass-based power plants can play a major role in rural development. Biomass energy could also aid in modernizing the agricultural economy.

A large amount of energy is expended in the cultivation and processing of crops like sugarcane, coconut, and rice which can met by utilizing energy-rich residues for electricity production. The integration of biomass-fueled gasifiers in coal-fired power stations would be advantageous in terms of improved flexibility in response to fluctuations in biomass availability and lower investment costs. The growth of the bioenergy industry can also be achieved by laying more stress on green power marketing.

Role of Waste-to-Energy in Waste Management

Waste-to-energy provides the fourth “R” in a comprehensive solid waste management program: reduction, reuse, recycling, and energy recovery. The benefits of full-scale implementation of energy recovery as a final step in waste management are evident:

  • conservation of natural resources and fossil fuels
  • drastic landfill reduction
  • lower greenhouse emissions

The need for an integrated solid waste management strategy in a city, state, or country becomes more evident as that region’s economy grows and the standard of living improves. With increases in consumption, the amount of waste generated also increases. This creates stresses on the land used for disposal, can lead to environmental pollution, and can be detrimental to public health if the waste is not disposed properly.