Industrial Biomass and the Full Life Cycle of Carbon Emissions

The scramble to meet that 2020 target is creating a new sort of energy business. In the past, electricity from wood was a small-scale waste-recycling operation: Scandinavian pulp and paper mills would have a power station nearby which burned branches and sawdust. Later came co-firing, a marginal change.

The Carbon Times Blog

carboncycle

Which source of renewable energy is most important to the European Union? Solar power, perhaps? (Europe has three-quarters of the world’s total installed capacity of solar photovoltaic energy.) Or wind? (Germany trebled its wind-power capacity in the past decade.) The answer is neither. By far the largest so-called renewable fuel used in Europe is wood.

In its various forms, from sticks to pellets to sawdust, wood (or to use its fashionable name, biomass) accounts for about half of Europe’s renewable-energy consumption. In some countries, such as Poland and Finland, wood meets more than 80% of renewable-energy demand. Even in Germany, home of the Energiewende (energy transformation) which has poured huge subsidies into wind and solar power, 38% of non-fossil fuel consumption comes from the stuff. After years in which European governments have boasted about their high-tech, low-carbon energy revolution, the main beneficiary seems to be the favoured fuel of pre-industrial…

View original post 1,243 more words

Advertisement

Carbon Dioxide Removal Can Lower Costs of Climate Protection

Options for carbon dioxide removal from the atmosphere include afforestation and chemical approaches like direct air capture of CO2 from the atmosphere or reactions of CO2 with minerals to form carbonates. But the use of biomass for energy generation combined with carbon capture and storage is less costly than chemical options, as long as sufficient biomass feedstock is available, the scientists point out.

After Big Bang

Directly removing CO2 from the air has the potential to alter the costs of climate change mitigation. It could allow prolonging greenhouse-gas emissions from sectors like transport that are difficult, thus expensive, to turn away from using fossil fuels. And it may help to constrain the financial burden on future generations, a study now published by the Potsdam Institute for Climate Impact Research (PIK) shows. It focuses on the use of biomass for energy generation, combined with carbon capture and storage (CCS). According to the analysis, carbon dioxide removal could be used under certain requirements to alleviate the most costly components of mitigation, but it would not replace the bulk of actual emissions reductions.

“Carbon dioxide removal from the atmosphere allows to separate emissions control from the time and location of the actual emissions. This flexibility can be important for climate protection,” says lead-author Elmar Kriegler. “You don’t have…

View original post 616 more words

Cities Worldwide Seek to Produce Recycled Energy

Public transportation like subway or buses in Sweden’s Hammarby sjostad city are running by 100 percent recycled energy. Hammarby sjostad is known as “the city with zero carbon emission.” It is easy to spot people putting bio-gas in their vehicles at every gas stations in Hammarby sjostad city.

Biofuels and energy production dominate Europe’s landscape

Barber's Meaty Issues

After a week in England and a month touring central Europe by road, rail and river, I have gained a superficial impression of the predominant types of agricultural activity in the region. I am talking about Austria, Bavaria, Rhineland and some of the old Communist countries – East Germany, Poland, Slovakia and the CzechRepublic.

View original post 723 more words

Trends in Food Waste Management

Food waste is an untapped energy source that mostly ends up rotting in landfills, thereby releasing greenhouse gases into the atmosphere. Food waste is difficult to treat or recycle since it contains high levels of sodium salt and moisture, and is mixed with other waste during collection. Major generators of food wastes include hotels, restaurants, supermarkets, residential blocks, cafeterias, airline caterers, food processing industries, etc.

In United States, food waste is the third largest waste stream after paper and yard waste. Around 12.7 percent of the total municipal solid waste (MSW) generated in the year 2008 was food scraps that amounted to about 32 million tons. According to EPA, about 31 million tons of food waste was thrown away into landfills or incinerators in 2008. As far as United Kingdom is concerned, households throw away 8.3 million tons of food each year. These statistics are an indication of tremendous amount of food waste generated all over the world.

The proportion of food waste in municipal waste stream is gradually increasing and hence a proper food waste management strategy needs to be devised to ensure its eco-friendly and sustainable disposal. Food waste can be recycled via:

  • In-vessel composting (IVC): A treatment that breaks down biodegradable waste by naturally occurring micro-organisms with oxygen, in an enclosed vessel or tunnel;
  • Anaerobic digestion (AD): A treatment that breaks down biodegradable waste in the absence of oxygen, producing a renewable energy (biogas) that can be used to generate electricity and heat.

Currently, only about 3 percent of food waste is recycled throughout U.S., mainly through composting. Composting provides an alternative to landfill disposal of food waste, however it requires large areas of land, produces volatile organic compounds and consumes energy. Consequently, there is an urgent need to explore better recycling alternatives. Anaerobic digestion has been successfully used in several European and Asian countries to stabilize food wastes, and to provide beneficial end-products. Sweden, Austria, Denmark, Germany and England have led the way in developing new advanced biogas technologies and setting up new projects for conversion of food waste into energy.

Of the different types of organic wastes available, food waste holds the highest potential in terms of economic exploitation as it contains high amount of carbon and can be efficiently converted into biogas and organic fertilizer. Food waste can either be used as a single substrate in a biogas plant, or can be co-digested with organic wastes like cow manure, poultry litter, sewage, crop residues, abattoir wastes, etc.

Enhanced by Zemanta

Trends in Waste-to-Energy Industry

NEW DELHI, INDIA - FEBRUARY 18: Indian workers...
Image by Getty Images via @daylife
NEW DELHI, INDIA - FEBRUARY 18: An  Indian wor...
Image by Getty Images via @daylife

Around 130 million tonnes of municipal solid waste (MSW) are combusted annually in over 600 waste-to-energy (WTE) facilities globally that produce electricity and steam for district heating and recovered metals for recycling. Since 1995, the global WTE industry increased by more than 16 million tonnes of MSW. Incineration, with energy recovery, is the most common waste-to-energy method employed worldwide. Over the last five years, waste incineration in Europe has generated between an average of 4% to 8% of their countries’ electricity and between an average of 10% to 15% of the continent’s domestic heat.

Currently, the European nations are recognized as global leaders of the SWM and WTE movement. They are followed behind by the Asia Pacific region and North America respectively. In 2007 there are more than 600 WTE plants in 35 different countries, including large countries such as China and small ones such as Bermuda. Some of the newest plants are located in Asia.

The United States processes 14 percent of its trash in WTE plants. Denmark, on the other hand, processes more than any other country – 54 percent of its waste materials. As at the end of 2008, Europe had more than 475 WTE plants across its regions – more than any other continent in the world – that processes an average of 59 million tonnes of waste per annum. In the same year, the European WTE industry as a whole had generated revenues of approximately US$4.5bn. Legislative shifts by European governments have seen considerable progress made in the region’s WTE industry as well as in the implementation of advanced technology and innovative recycling solutions. The most important piece of WTE legislation pertaining to the region has been the European Union’s Landfill Directive, which was officially implemented in 2001 which has resulted in the planning and commissioning of an increasing number of WTE plants over the past five years.

Enhanced by Zemanta