Fuelcell power using Biogas

Clean Energy Diary

Fuel cell technology is emerging as a base-load power generation technology as well as back-up power for intermittent renewable energy such as solar and wind, substituting conventional storage batteries. However, Fuelcell requires a Fuel in the form of Hydrogen of high purity. The advantage of Fuel cell is, its high electrical efficiency compared to conventional fossil fuel power generation technology, using Carnot cycle. Fuel cell is an electro-chemical device like a battery and generates power using electro-chemical redox reaction silently with no gaseous emission, unlike engines and turbines with combustion, rotary movements and gaseous emissions. The fuel Hydrogen can be generated using a renewable energy sources such as solar and wind as described in my previous articles, “Solar Hydrogen for cleaner future” dated 4 July 2012, and “Renewable Hydrogen for remote power supply “dated 28 June 2012.

Alternatively, Hydrogen can also be generated using biomass through Biogas. Biogas…

View original post 748 more words

Advertisements

Biogas Upgradation

Enrichment of biogas is primarily achieved by carbon dioxide removal which then enhances the energy value of the gas to give longer, driving distances with a fixed gas storage volume. Removal of carbon dioxide also provides a consistent gas quality with respect to energy value. The latter is regarded to be of great importance from the vehicle manufacturers in order to reach low emissions of nitrogen oxide. At present four different methods are used commercially for removal of carbon dioxide from biogas either to reach vehicle fuel standard or to reach natural gas quality for injection to the natural gas grid. These methods are:

  • Water absorption
  • Polyethylene glycol absorption
  • Carbon molecular sieves
  • Membrane separation

 Water scrubbing

Water scrubbing is used to remove carbon dioxide but also hydrogen sulphide from biogas since these gases is more soluble in water than methane. The absorption process is purely physical. Usually the biogas is pressurized and fed to the bottom of a packed column where water is fed on the top and so the absorption process is operated counter-currently.

Polyethylene glycol scrubbing

Polyethylene glycol scrubbing is a physical absorption process. Selexol is one of the trade names used for a solvent. In this solvent, like in water, both carbon dioxide and hydrogen sulphide are more soluble than methane. The big difference between water and Selexol is that carbon dioxide and hydrogen sulphide are more soluble in Selexol which results in a lower solvent demand and reduced pumping. In addition, water and halogenated hydrocarbons (contaminants in biogas from landfills) are removed when scrubbing biogas with Selexol.

Carbon molecular sieves

Molecular sieves are excellent products to separate specifically a number of different gaseous compounds in biogas. Thereby the molecules are usually loosely adsorbed in the cavities of the carbon sieve but not irreversibly bound. The selectivity of adsorption is achieved by different mesh sizes and/or application of different gas pressures. When the pressure is released the compounds extracted from the biogas are desorbed. The process is therefore often called “pressure swing adsorption” (PSA). To enrich methane from biogas the molecular sieve is applied which is produced from coke rich in pores in the micrometer range. The pores are then further reduced by cracking of the hydrocarbons. In order to reduce the energy consumption for gas compression, a series of vessels are linked together. The gas pressure released from one vessel is subsequently used by the others. Usually four vessels in a row are used filled with molecular sieve which removes at the same time CO2 and water vapour.

Membranes

There are two basic systems of gas purification with membranes: a high pressure gas separation with gas phases on both sides of the membrane, and a low-pressure gas liquid absorption separation where a liquid absorbs the molecules diffusing through the membrane.

  • High pressure gas separation

Pressurized gas (36 bar) is first cleaned over for example an activated carbon bed to remove (halogenated) hydrocarbons and hydrogen sulphide from the raw gas as well as oil vapour from the compressors. The carbon bed is followed by a particle filter and a heater. The raw gas is upgraded in 3 stages to a clean gas with 96 % methane or more. The waste gas from the first two stages is recycled and the methane can be recovered. The waste gas from stage 3 (and in part of stage 2) is flared or used in a steam boiler as it still contains 10 to 20 % methane.

  • Gas-liquid absorption membranes

Gas-liquid absorption using membranes is a separation technique which was developed for biogas upgrading in the recent past. The essential element is a micro-porous hydrophobic membrane separating the gaseous from the liquid phase. The molecules from the gas stream, flowing in one direction, which are able to diffuse through the membrane will be absorbed on the other side by the liquid flowing in counter current. The absorption membranes work at approx. atmospheric pressure (1 bar) which allows low-cost construction. The removal of gaseous components is very efficient. At a temperature of 25 to 35°C the H2S concentration in the raw gas of 2 % is reduced to less than 250 ppm.

Analyzing Different Waste-to-Energy Technologies

Major components of Waste-to-Energy Processes

  1. Front end MSW pre-processing is used to prepare MSW for treatment and separate any recyclables
  2. Conversion unit (reactor)
  3. Gas and residue treatment plant (optional)
  4. Energy recovery plant (optional): Energy / chemicals production system includes gas turbine, boiler, internal combustion engines for power production. Alternatively, ethanol or other organic chemicals can be produced
  5. Emissions clean up

Incineration

  • Combustion of raw MSW, moisture less than 50%
  • Sufficient amount of oxygen is required to fully oxidize the fuel
  • Combustion temperatures are in excess of 850oC
  • Waste is converted into CO2 and water concern about toxics (dioxin, furans)
  • Any non-combustible materials (inorganic such as metals, glass) remain as a solid, known as bottom ash (used as feedstock in cement and brick manufacturing)
  • Fly ash APC (air pollution control residue) particulates, etc
  • Needs high calorific value waste to keep combustion process going, otherwise requires high energy for maintaining high temperatures

Anaerobic Digestion

  •  Well-known technology for domestic sewage and organic wastes treatment, but not for unsorted MSW
  • Biological conversion of biodegradable organic materials in the absence of oxygen at temperatures 55 to 75oC (thermophilic digestion – most effective temperature range)
  • Residue is stabilized organic matter that can be used as soil amendment after proper dewatering
  • Digestion is used primarily to reduce quantity of sludge for disposal / reuse
  • Methane gas generated used for electricity / energy generation or flared

Gasification

  • Can be seen as between pyrolysis and combustion (incineration) as it involves partial oxidation.
  • Exothermic process (some heat is required to initialize and sustain the gasification process).
  • Oxygen is added but at low amounts not sufficient for full oxidation and full combustion.
  • Temperatures are above 650oC
  • Main product is syngas, typically has net calorific value of 4 to 10 MJ/Nm3
  • Other product is solid residue of non-combustible materials (ash) which contains low level of carbon

Pyrolysis

  • Thermal degradation of organic materials through use of indirect, external source of heat
  • Temperatures between 300 to 850oC are maintained for several seconds in the absence of oxygen.
  • Product is char, oil and syngas composed primarily of O2, CO, CO2, CH4 and complex hydrocarbons.
  • Syngas can be utilized for energy production or proportions can be condensed to produce oils and waxes
  • Syngas typically has net calorific value (NCV) of 10 to 20 MJ/Nm

Plasma Gasification

  • Use of electricity passed through graphite or carbon electrodes, with steam and/or oxygen / air injection to produce electrically conducting gas (plasma)
  • Temperatures are above 3000oC
  • Organic materials are converted to syngas composed of H2, CO
  • Inorganic materials are converted to solid slag
  • Syngas can be utilized for energy production or proportions can be condensed to produce oils and waxes

 

        Net Energy Generation Potential Per Ton MSW

Waste Management Method

Energy Potential*

(kWh per ton MSW)

Recycling

2,250

Landfilling

   105

WTE Incineration

   585

Gasification

   660

Pyrolysis

   660

Anaerobic Digestion

   250

Cost Economics of WTE Processes

Technology

Plant capacity

(tons/day)

Capital cost

(M US$)

O&M cost

(US$/ton)

Planning to commissioning

(months)

Pyrolysis

70-270

16 – 90

80 – 150

12 – 30

Gasification

900

15 – 170

80 – 150

12 – 30

Incineration

1300

30 – 180

80 – 120

54 – 96

Plasma gasification

900

50 – 80

80 – 150

12 – 30

Anaerobic digestion

300

20 – 80

60 – 100

12 – 24

In vessel composting

500

50 – 80

30 – 60

9 – 15

Sanitary landfill

500

5 – 10

10 – 20

9 – 15

Bioreactor landfill

500

10 – 15

15 – 30

12 – 18

Enhanced by Zemanta