MSW to Energy – A Quick Glance

Energy Matters

Brief Introduction: There have been  lots of  reports from all over the world about utilization of municipal solid waste(MSW) for conversion to energy. In India too, we have been talking and discussing about segregation of household waste to enable subsequent processing activities. But it has not taken off in any significant way due to a number of reasons. In the next couple of posts I intend to summarize the approaches followed worldwide along with Technology options available. Hopefully, it will throw light on what we need to do in India to put our act together for exploiting municipal solid waste (MSW) and its conversion to energy. Globally too, although there are quite a few success stories to relate, it has been rather difficult to sustain interest.  This post is based on a recent extensive report from EPRI (Electrical Power Research Institute) on this subject. I do believe there are several…

View original post 368 more words


Waste to Energy for India

Melting Coal

Urban India produces 55 million tones of municipal solid waste and 38 billion litres of sewage annually. Further, large amounts of waste are produced by industries.

Waste generation in India is growing at a very fast pace and is expected to rise rapidly in the future. This has mainly been due to industrialization, increase in living standards and urbanization. This waste needs to be contained.  The most profitable and feasible option is conversion of this waste to energy. Advancement in conversion technologies has made it easier to undergo this process thereby minimizing waste and utilizing its energy potential.

Waste to Energy India Scenario

According to the ministry of new and renewable energy (MNRE) 2010-11 annual report, there exists a potential of 3600 MW from urban and industrial waste. MNRE is actively promoting the generation of energy from waste by providing incentives and subsidies. Estimates from the Indian renewable energy development…

View original post 349 more words

The Incineration Debate


On Easter Monday, 9th April 2012, the front page of The Times newspaper carried a story about the debate that’s currently raging over whether the UK ought to be building more and bigger incinerators to burn our household rubbish.

Opponents of waste-to-energy incineration insist that it discourages recycling, adds to CO2 emissions at a time when we’re trying to reduce them, and that incineration plants themselves are an ugly blot on the urban landscape.

Proponents, on the other hand, often dismiss these claims as fiction.

I tend to come down on the “for” side of the waste incineration argument, for several reasons, but chief amongst these is the belief that the argument only exists because we, as a society, create waste and crave energy.

According to statistics released by the Department of Energy and Climate Change (DECC) UK electricity consumption for consumer electronics soared by 576% between 1970 and 2010.

View original post 371 more words

Thermal Conversion of Wastes

Thermal (or thermochemical) conversion systems consist of primary conversion technologies which convert the waste into heat or gaseous and liquid products. These technologies can be classified according to the principal energy carrier produced in the conversion process. Carriers are in the form of heat, gas, liquid and/or solid products, depending on the extent to which oxygen is admitted to the conversion process (usually as air).


Direct combustion is the best established and most commonly used technology for converting wastes to heat. During combustion, waste is burnt in excess air to produce heat. The first stage of combustion involves the evolution of combustible vapours from wastes, which burn as flames. Steam is expanded through a conventional turbo-alternator to produce electricity. The residual material, in the form of charcoal, is burnt in a forced air supply to give more heat. The main products of efficient combustion are carbon dioxide and water vapor, however tars, smoke and alkaline ash particles are also emitted. Minimization of these emissions and accommodation of their possible effects are important concerns in the design of environmentally acceptable waste combustion systems.


Co-firing or co-combustion of biomass wastes with coal and other fossil fuels can provide a short-term, low-risk, low-cost option for producing renewable energy while simultaneously reducing the use of fossil fuels. Co-firing involves utilizing existing power generating plants that are fired with fossil fuel (generally coal), and displacing a small proportion of the fossil fuel with renewable biomass fuels. Co-firing has the major advantage of avoiding the construction of new, dedicated, waste-to-energy power plant. An existing power station is modified to accept the waste resource and utilize it to produce a minor proportion of its electricity. Co-firing may be implemented using different types and percentages of wastes in a range of combustion and gasification technologies. Most forms of biomass wastes are suitable for co-firing. These include dedicated municipal solid wastes, wood waste and agricultural residues such as straw and husk.


Gasification systems operate by heating wastes in an environment where the solid waste breaks down to form a flammable gas. The gasification of biomass takes place in a restricted supply of air or oxygen at temperatures up to 1200–1300°C. The gas produced—synthesis gas, or syngas—consists of carbon monoxide, hydrogen and methane with small amounts of higher hydrocarbons.  Syngas may be burnt to generate heat; alternatively it may be processed and then used as fuel for gas-fired engines or gas turbines to drive generators. In smaller systems, the syngas can be fired in reciprocating engines, micro-turbines, Stirling engines, or fuel cells. There are also small amounts of unwanted by-products such as char particles, tars, oils and ash, which tend to be damaging to engines, turbines or fuel cells and which must therefore first be removed or processed into additional fuel gas. This implies that gasifier operation is significantly more demanding than the operation of combustion systems.


Pyrolysis is thermal decomposition occurring in the absence of oxygen. During pyrolysis process, waste is heated either in the absence of air (i.e. indirectly), or by the partial combustion of some of the waste in a restricted air or oxygen supply. This results in the thermal decomposition of the waste to form a combination of a solid char, gas, and liquid bio-oil, which can be used as a liquid fuel or upgraded and further processed to value-added products. High temperature and longer residence time increase the waste conversion to gas and moderate temperature and short vapour residence time are optimum for producing liquids. Pyrolysis technologies are generally categorized as “fast” or “slow” according to the time taken for processing the feed into pyrolysis products. Using fast pyrolysis, bio-oil yield can be as high as 80 percent of the product on a dry fuel basis. Bio-oil can act as a liquid fuel or as a feedstock for chemical production.