Biomass Resources in Middle East and North Africa (MENA)

The major biomass producing MENA countries are Sudan, Egypt, Algeria, Yemen, Iraq, Syria and Jordan. Traditionally, biomass energy has been widely used in rural areas for domestic purposes in the MENA region. Since most of the region is arid/semi-arid, the biomass energy potential is mainly contributed by municipal solid wastes, agricultural residues and agro-industrial wastes.

Municipal solid wastes represent the best source of biomass in MENA countries. The high rate of population growth, urbanization and economic expansion in MENA region is not only accelerating consumption rates but also accelerating the generation of municipal waste.

The food industry in MENA produces a large number of organic residues and by-products that can be used as biomass energy sources. In recent decades, the fast-growing food and beverage processing industry has remarkably increased in importance in major countries in the region.

The Middle Eastern countries have strong animal population. The livestock sector, in particular sheep and goats, plays an important role in the national economy of the MENA countries. Agriculture plays an important role in the economies of most of the countries in the Middle East and North Africa. Crop residues encompasses all agricultural wastes such as bagasse, straw, stem, stalk, leaves, husk, shell, peel, pulp, stubble, etc.

Advertisements

Advisory and Consulting Services in Waste-to-Energy and Biomass Energy

BioEnergy Consult is committed to the development of sustainable energy systems based on non-food biomass resources and different types of wastes. We provide a wide range of cost-effective services that are specially designed to your needs, be it determining project feasibility, evaluating risks, preparing business plans, designing training modules or arranging project finance.

Please visit http://www.bioenergyconsult.com for more information on our capabilities, and feel free to contact us. We shall be happy to offer assistance in the development of your waste-to-energy, waste management, biomass energy and sustainable development ventures.

Email: info@bioenergyconsult.com

Renewable Energy in Jordan

Jordan has been the leader in the development of renewable energy systems in the Middle East, with its tremendous renewable energy potential in the form of wind, solar, biomass and waste-to-energy. Renewable energy accounted for about 2% of the energy consumption in 2009, and the country has set ambitious targets to raise this share to 7% in 2015 and 10% in 2020. To achieve these figures, more than 1200MW of renewable energy projects are expected to be implemented in the coming decade, with emphasis on solar and wind energy. Jordan will require investments in the range of USD 1.4 – 2.1 billion within the next 10 years to realize its clean energy potential. The Government of Jordan has pledged its full support to the developmental initiatives in the renewable energy and energy efficiency sector through continuous cooperation with international partners, donors and private investors.

For full access to the Jordan country report, please contact the author at salman@bioenergyconsult.com

Socio-economic and Environmental Benefits of Waste-to-Energy

Waste-to-energy technologies hold the potential to create renewable energy from waste matter, including municipal solid waste, industrial waste, agricultural waste, and industrial byproducts. Besides recovery of substantial energy, these technologies can lead to a substantial reduction in the overall waste quantities requiring final disposal, which can be better managed for safe disposal in a controlled manner. Waste-to-energy systems can contribute substantially to GHG mitigation through both reductions of fossil carbon emissions and long-term storage of carbon in biomass wastes. Modern waste-to-energy systems options offer significant, cost-effective and perpetual opportunities for greenhouse gas emission reductions.

Additional benefits offered are employment creation in rural areas, reduction of a country’s dependency on imported energy carriers (and the related improvement of the balance of trade), better waste control, and potentially benign effects with regard to biodiversity, desertification, recreational value, etc. In summary, waste-to-energy can significantly contribute to sustainable development both in developed and less developed countries. Waste-to-energy is not only a solution to reduce the volume of waste that is and provide a supplemental energy source, but also yields a number of social benefits that cannot easily be quantified.

Waste-to-Energy Projects in India – Technical Issues

For self-sustaining combustion, there should be a heat content of at least 2500 kcal/kg (about 5000 Btu/lb). Usually below 1500 kcal/kg, it is not recommended for combustion. Indian MSW is infamous for its low heat content (770 to 1000 kcal/kg, on dry basis, sometimes as low as 600 kcal/kg), high moisture content (30 to 55 % by weight) and high inert contents (30 to 50 % by weight). It is a fact that Indian MSW is not directly suitable for incineration. Waste preparation is a must for incinerating Indian MSW. Waste should be dried; inerts removed and heat content improved to about 2500 kcal/kg.

In order to determine whether a thermal processing project is a feasible waste management alternative for any city, the following questions should be addressed:

  • Is source-segregation practiced in the target area?
  • Is the thermochemical technology approved by the MNRE and the CPCB?
  • Is there a buyer for the energy (electricity/CHP) produced by the energy recovery facility?
  • Is there strong political and public support for a WTE facility?
  • Are there enough funds to establish state-of-the-art small modular gasification / pyrolysis plant?

Elements of successful Advanced Thermal WTE Project

  • Waste segregation
  • Waste receiving and storage capability
  • Waste preparation plant
  • Gasification/pyrolysis process
  • Syngas treatment process
  • CHP / Power generation

Biomass Energy in Southeast Asia

The rapid economic growth and industrialization in Southeast Asia is characterized by a significant gap between energy supply and demand. The energy demand in the region is expected to grow rapidly in the coming years which will have a profound impact on the global energy market. In addition, the region has many locations with high population density, which makes public health vulnerable to the pollution caused by fossil fuels. Another important rationale for transition from fossil-fuel-based energy systems to renewable ones arises out of observed and projected impacts of climate change. Due to the rising share of greenhouse gas emissions from Asia, it is imperative on all Asian countries to promote sustainable energy to significantly reduce GHGs emissions and foster sustainable energy trends. Rising proportion of greenhouse gas emissions is causing large-scale ecological degradation, particularly in coastal and forest ecosystems, which may further deteriorate environmental sustainability in the region.

The reliance on conventional energy sources can be substantially reduced as the region is one of the leading producers of biomass resources in the world. The energy generating capacity of biomass-based CHP plants is comparatively much higher than other alternative energy technologies like solar, wind and geothermal energy. In addition, solar and wind projects are confined to remote rural electrification and community centres, where the required installed capacity is low. On the other hand, biomass-based cogeneration plants can generate higher capacities of electrical and heat energy that could benefit an entire township and industries in the immediate area.

Woody Biomass and Energy Conversion Efficiency

Every energy conversion system wastes a portion of its input energy. For biomass to electricity conversion systems, 50% or more of the energy input can be lost – even up to 90% for some small-scale and alternative technologies. However, the energy rejected from a conversion system can often be used productively for industrial or residential heating purposes in place of burning fuels separately for that purpose. When this is done the overall efficiency can jump to 75-80%. Most systems must reduce their electricity production somewhat to make cogeneration feasible.

Thermal applications are the most efficient conversion technology for turning woody biomass into energy and should be considered in the development of a national Renewable Portfolio Standard (RPS). Thermal applications for woody biomass can be up to 90% efficient, compared to 20% for electricity and 50-70% for bio-fuels. Thermal systems can be applied at multiple scales, and are often more economically viable, particularly in rural and remote areas, than electrical generation.

By not including thermal energy, one of the most efficient uses of woody biomass energy is put at a disadvantage to generating electricity and processing liquid bio-fuels. This runs counter to the goals of displacing fossil fuels, promoting energy efficiency, and minimizing carbon emissions.

Waste-to-Energy Conversion Pathways

The conversion of organic waste material to energy can proceed along three main pathways – thermochemical, biochemical and physicochemical. Thermochemical conversion, characterized by higher temperature and conversion rates, is best suited for lower moisture feedstock and is generally less selective for products.

Thermochemical conversion includes incineration, pyrolysis and gasification. The incineration technology is the controlled combustion of waste with the recovery of heat to produce steam which in turn produces power through steam turbines. Pyrolysis and gasification represent refined thermal treatment methods as alternatives to incineration and are characterized by the transformation of the waste into product gas as energy carrier for later combustion in, for example, a boiler or a gas engine.

Bio-chemical conversion processes, which include anaerobic digestion and fermentation, are preferred for wastes having high percentage of organic biodegradable (putrescible) matter and high moisture content. Anaerobic digestion is a biological treatment method that can be used to recover both nutrients and energy contained in organic wastes such as animal manure. The process generates gases with a high content of methane (55–70 %) as well as biofertilizer. Alcohol fermentation is the transformation of organic fraction of waste to ethanol by a series of biochemical reactions using specialized microorganisms.

The physico-chemical technology involves various processes to improve physical and chemical properties of solid waste. The combustible fraction of the waste is converted into high-energy fuel pellets which may be used in steam generation. The waste is first dried to bring down the high moisture levels. Sand, grit, and other incombustible matter were then mechanically separated before the waste is compacted and converted into pellets. Fuel pellets have several distinct advantages over coal and wood because it is cleaner, free from incombustibles, has lower ash and moisture contents, is of uniform size, cost-effective, and eco-friendly.

Woody Biomass Resources

Biomass power is the largest source of renewable energy as well as a vital part of the waste management infrastructure. An increasing global awareness about environmental issues is acting as the driving force behind the use of alternative and renewable sources of energy. A greater emphasis is being laid on the promotion of bioenergy in the industrialized as well as developing world to counter environmental issues.

Biomass may be used for energy production at different scales, including large-scale power generation, CHP, or small-scale thermal heating projects at governmental, educational or other institutions. Biomass comes from both human and natural activities and incorporates by-products from the timber industry, agricultural crops, forestry residues, household wastes, and wood. The resources range from corn kernels to corn stalks, from soybean and canola oils to animal fats, from prairie grasses to hardwoods, and even include algae. The largest source of energy from wood is pulping liquor or black liquor, a waste product from the pulp and paper industry.

Woody biomass is the most important renewable energy source if proper management of vegetation is ensured. The main benefits of woody biomass are as follows:

  • Uniform distribution over the world’s surface, in contrast to finite sources of energy.
  • Less capital-intensive conversion technologies employed for exploiting the energy potential.
  • Attractive opportunity for local, regional and national energy self-sufficiency.
  • Techno-economically viable alternative to fast-depleting fossil fuel reserves.
  • Reduction in GHGs emissions.
  • Provide opportunities to local farmers, entrepreneurs and rural population in making use of its sustainable development potential.

The United States is currently the largest producer of electricity from biomass having more than half of the world’s installed capacity. Biomass represents 1.5% of the total electricity supply compared to 0.1% for wind and solar combined. More than 7800 MW of power is produced in biomass power plants installed at more than 350 locations in the U.S., which represent about 1% of the total electricity generation capacity. According to the International Energy Agency, approximately 11% of the energy is derived from biomass throughout the world.

Biomass Resources

Biomass processing systems constitute a significant portion of the capital investment and operating costs of a biomass conversion facility depending on the type of biomass to be processed as well as the feedstock preparation requirements. Its main constituents are systems for biomass storage, handling, conveying, size reduction, cleaning, drying, and feeding. Harvesting biomass crops, collecting biomass residues, and storing and transporting biomass resources are critical elements in the biomass resource supply chain.

All processing of biomass yields by-products and waste streams collectively called residues, which have significant energy potential. A wide range of biomass resources are available for transformation into energy in natural forests, rural areas and urban centres. Some of the sources have been discussed in the following paragraphs:

Biomass Cycle
A host of natural and human activities contributes to the biomass feedstock

1. Pulp and paper industry residues
The largest source of energy from wood is the waste product from the pulp and paper industry called black liquor. Logging and processing operations generate vast amounts of biomass residues. Wood processing produces sawdust and a collection of bark, branches and leaves/needles. A paper mill, which consumes vast amount of electricity, utilizes the pulp residues to create energy for in-house usage.

2. Forest residues
Forest harvesting is a major source of biomass for energy. Harvesting may occur as thinning in young stands, or cutting in older stands for timber or pulp that also yields tops and branches usable for bioenergy. Harvesting operations usually remove only 25 to 50 percent of the volume, leaving the residues available as biomass for energy. Stands damaged by insects, disease or fire are additional sources of biomass. Forest residues normally have low density and fuel values that keep transport costs high, and so it is economical to reduce the biomass density in the forest itself.

3. Agricultural or crop residues
Agriculture crop residues include corn stover (stalks and leaves), wheat straw, rice straw, nut hulls etc. Corn stover is a major source for bioenergy applications due to the huge areas dedicated to corn cultivation worldwide.

4. Urban wood waste
Such waste consists of lawn and tree trimmings, whole tree trunks, wood pallets and any other construction and demolition wastes made from lumber. The rejected woody material can be collected after a construction or demolition project and turned into mulch, compost or used to fuel bioenergy plants.

5. Energy crops
Dedicated energy crops are another source of woody biomass for energy. These crops are fast-growing plants, trees or other herbaceous biomass which are harvested specifically for energy production. Rapidly-growing, pest-tolerant, site and soil-specific crops have been identified by making use of bioengineering. For example, operational yield in the northern hemisphere is 10-15 tonnes/ha annually. A typical 20 MW steam cycle power station using energy crops would require a land area of around 8,000 ha to supply energy on rotation.

Herbaceous energy crops are harvested annually after taking two to three years to reach full productivity. These include grasses such as switchgrass, elephant grass, bamboo, sweet sorghum, wheatgrass etc.

Short rotation woody crops are fast growing hardwood trees harvested within five to eight years after planting. These include poplar, willow, silver maple, cottonwood, green ash, black walnut, sweetgum, and sycamore.

Industrial crops are grown to produce specific industrial chemicals or materials, e.g. kenaf and straws for fiber, and castor for ricinoleic acid. Agricultural crops include cornstarch and corn oil? soybean oil and meal? wheat starch, other vegetable oils etc. Aquatic resources such as algae, giant kelp, seaweed, and microflora also contribute to bioenergy feedstock.

Importance of Waste-to-Energy Plants

Waste-to-energy plants offer two important benefits of environmentally safe waste management and disposal, as well as the generation of clean electric power. Waste-to-energy facilities produce clean, renewable energy through thermal, biochemical and physicochemical methods. The growing use of waste-to-energy as a method to dispose off solid and liquid wastes and generate power has greatly reduced environmental impacts of municipal solid waste management, including emissions of greenhouse gases.

Waste-to-energy conversion reduces greenhouse gas emissions in two ways. Electricity is generated which reduces the dependence on electrical production from power plants based on fossil fuels. The greenhouse gas emissions are significantly reduced by preventing methane emissions from landfills. Moreover, waste-to-energy plants are highly efficient in harnessing the untapped sources of energy from a variety of wastes.

An environmentally sound and techno-economically viable methodology to treat biodegradable waste is highly crucial for the sustainability of\ modern societies. A transition from conventional energy systems to one based on renewable resources is necessary to meet the ever-increasing demand for energy and to address environmental concerns.