Syngas as Feedstock for Biofuels

An attractive approach to converting biomass into liquid or gaseous fuels is direct gasification, followed by conversion of the gas to final fuel. NKGE98YUDMEC Ethanol can be produced this way, but other fuels can be produced more easily and potentially at lower cost, though none of the approaches is currently inexpensive. The choice of which process to use is influenced by the fact that lignin cannot easily be converted into a gas through biochemical conversion. Lignin can, however, be gasified through a heat process. The lignin components of plants can range from near 0% to 35%. For those plants at the lower end of this range, the chemical conversion approach is better suited. For plants that have more lignin, the heat-dominated approach is more effective. Once the gasification of biomass is complete, the resulting gases can be used in a variety of ways to produce liquid fuels discussed, in brief, below

Fischer-Tropsch (F-T) fuels

The Fischer-Tropsch process converts “syngas” (mainly carbon monoxide and hydrogen) into diesel fuel and naphtha (basic gasoline) by building polymer chains out of these basic building blocks. Typically a variety of co-products (various chemicals) are also produced.  Figure 2.1 shows the production of diesel fuel from bio-syngas by Fisher-Tropsch synthesis (FTS).

The Fisher-Tropsch process is an established technology and has been proven on a large scale but adoption has been limited by high capital and O&M costs. According to Choren Industries, a German based developer of the technology, it takes 5 tons of biomass to produce 1 ton of biodiesel, and 1 hectare generates 4 tons of biodiesel.

Methanol

Syngas can also be converted into methanol through dehydration or other techniques, and in fact methanol is an intermediate product of the F-T process (and is therefore cheaper to produce than F-T gasoline and diesel). Methanol is somewhat out of favour as a transportation fuel due to its relatively low energy content and high toxicity, but might be a preferred fuel if fuel cell vehicles are developed with on-board reforming of hydrogen.

Dimethyl ether

DME also can be produced from syngas, in a manner similar to methanol. It is a promising fuel for diesel engines, due to its good combustion and emissions properties. However, like LPG, it requires special fuel handling and storage equipment and some modifications of diesel engines, and is still at an experimental phase. If diesel vehicles were designed and produced to run on DME, they would become inherently very low pollutant emitting vehicles; with DME produced from biomass, they would also become very low GHG vehicles.

Advertisement

Concept of Biorefinery

Description unavailable

A biorefinery is a facility that integrates biomass conversion processes and equipment to produce fuels, power, and value-added chemicals from biomass. The biorefinery concept is analogous to today’s petroleum refinery, which produces multiple fuels and products from petroleum.By producing several products, a biorefinery takes advantage of the various components in biomass and their intermediates, therefore maximizing the value derived from the biomass feedstock. A biorefinery could, for example, produce one or several low-volume, but high-value, chemical products and a low-value, but high-volume liquid transportation fuel such as biodiesel or bioethanol. At the same time, it can generate electricity and process heat, through CHP technology, for its own use and perhaps enough for sale of electricity to the local utility. The high value products increase profitability, the high-volume fuel helps meet energy needs, and the power production helps to lower energy costs and reduce GHG emissions from traditional power plant facilities.

There are several platforms which can be employed in biorefineries with the major ones being the sugar platform and the thermochemical platform (also known as syngas platform). Sugar platform biorefineries breaks down biomass into different types of component sugars for fermentation or other biological processing into various fuels and chemicals. On the other hand, thermochemical biorefineries transform biomass into synthesis gas (hydrogen and carbon monoxide) or pyrolysis oil.

The thermochemical biomass conversion process is complex, and uses components, configurations, and operating conditions that are more typical of petroleum refining. Biomass is converted into syngas, and syngas is converted into an ethanol-rich mixture. However, syngas created from biomass contains contaminants such as tar and sulphur that interfere with the conversion of the syngas into products. These contaminants can be removed by tar-reforming catalysts and catalytic reforming processes. This not only cleans the syngas, it also creates more of it, improving process economics and ultimately cutting the cost of the resulting ethanol.

Enhanced by Zemanta

Analyzing Different Waste-to-Energy Technologies

Major components of Waste-to-Energy Processes

  1. Front end MSW pre-processing is used to prepare MSW for treatment and separate any recyclables
  2. Conversion unit (reactor)
  3. Gas and residue treatment plant (optional)
  4. Energy recovery plant (optional): Energy / chemicals production system includes gas turbine, boiler, internal combustion engines for power production. Alternatively, ethanol or other organic chemicals can be produced
  5. Emissions clean up

Incineration

  • Combustion of raw MSW, moisture less than 50%
  • Sufficient amount of oxygen is required to fully oxidize the fuel
  • Combustion temperatures are in excess of 850oC
  • Waste is converted into CO2 and water concern about toxics (dioxin, furans)
  • Any non-combustible materials (inorganic such as metals, glass) remain as a solid, known as bottom ash (used as feedstock in cement and brick manufacturing)
  • Fly ash APC (air pollution control residue) particulates, etc
  • Needs high calorific value waste to keep combustion process going, otherwise requires high energy for maintaining high temperatures

Anaerobic Digestion

  •  Well-known technology for domestic sewage and organic wastes treatment, but not for unsorted MSW
  • Biological conversion of biodegradable organic materials in the absence of oxygen at temperatures 55 to 75oC (thermophilic digestion – most effective temperature range)
  • Residue is stabilized organic matter that can be used as soil amendment after proper dewatering
  • Digestion is used primarily to reduce quantity of sludge for disposal / reuse
  • Methane gas generated used for electricity / energy generation or flared

Gasification

  • Can be seen as between pyrolysis and combustion (incineration) as it involves partial oxidation.
  • Exothermic process (some heat is required to initialize and sustain the gasification process).
  • Oxygen is added but at low amounts not sufficient for full oxidation and full combustion.
  • Temperatures are above 650oC
  • Main product is syngas, typically has net calorific value of 4 to 10 MJ/Nm3
  • Other product is solid residue of non-combustible materials (ash) which contains low level of carbon

Pyrolysis

  • Thermal degradation of organic materials through use of indirect, external source of heat
  • Temperatures between 300 to 850oC are maintained for several seconds in the absence of oxygen.
  • Product is char, oil and syngas composed primarily of O2, CO, CO2, CH4 and complex hydrocarbons.
  • Syngas can be utilized for energy production or proportions can be condensed to produce oils and waxes
  • Syngas typically has net calorific value (NCV) of 10 to 20 MJ/Nm

Plasma Gasification

  • Use of electricity passed through graphite or carbon electrodes, with steam and/or oxygen / air injection to produce electrically conducting gas (plasma)
  • Temperatures are above 3000oC
  • Organic materials are converted to syngas composed of H2, CO
  • Inorganic materials are converted to solid slag
  • Syngas can be utilized for energy production or proportions can be condensed to produce oils and waxes

 

        Net Energy Generation Potential Per Ton MSW

Waste Management Method

Energy Potential*

(kWh per ton MSW)

Recycling

2,250

Landfilling

   105

WTE Incineration

   585

Gasification

   660

Pyrolysis

   660

Anaerobic Digestion

   250

Cost Economics of WTE Processes

Technology

Plant capacity

(tons/day)

Capital cost

(M US$)

O&M cost

(US$/ton)

Planning to commissioning

(months)

Pyrolysis

70-270

16 – 90

80 – 150

12 – 30

Gasification

900

15 – 170

80 – 150

12 – 30

Incineration

1300

30 – 180

80 – 120

54 – 96

Plasma gasification

900

50 – 80

80 – 150

12 – 30

Anaerobic digestion

300

20 – 80

60 – 100

12 – 24

In vessel composting

500

50 – 80

30 – 60

9 – 15

Sanitary landfill

500

5 – 10

10 – 20

9 – 15

Bioreactor landfill

500

10 – 15

15 – 30

12 – 18

Enhanced by Zemanta

A Glance at Biomass Energy Technologies

Biomass energy technology is inherently flexible. The variety of technological options available means that it can be applied at a small, localized scale primarily for heat, or it can be used in much larger base-load power generation capacity whilst also producing heat. Biomass generation can thus be tailored to rural or urban environments, and utilized in domestic, commercial or industrial applications.

A wide range of technologies are available for realizing the potential of biomass waste as an energy source, ranging from very simple systems for disposing of dry waste to more complex technologies capable of dealing with large amounts of industrial waste.

Biomass can be converted into energy by simple combustion, by co-firing with other fuels or through some intermediate process such as gasification. The energy produced can be electrical power, heat or both (combined heat and power, or CHP). The advantage of utilizing heat as well as or instead of electrical power is the marked improvement of conversion efficiency – electrical generation has a typical efficiency of around 30%, but if heat is used efficiencies can rise to more than 85%.

 Biochemical processes, like anaerobic digestion, can also produce clean energy in the form of biogas which can be converted to power and heat using a gas engine. In addition, wastes can also yield liquid fuels, such as cellulosic ethanol, which can be used to replace petroleum-based fuels. Algal biomass is also emerging as a good source of energy because it can serve as natural source of oil, which conventional refineries can transform into jet fuel or diesel fuel.