Waste-to-Energy in a Dairy Farm

The farm is now turning the extra manure into fuel for its delivery trucks, powering 42 tractor-trailers that make daily runs to raw milk processing plants in Indiana, Kentucky and Tennessee.

Eideard

Here at one of the largest dairy farms in the country, electricity generated using an endless supply of manure runs the equipment to milk around 30,000 cows three times a day.

For years, the farm has used livestock waste to create enough natural gas to power 10 barns, a cheese factory, a cafe, a gift shop and a maze of child-friendly exhibits about the world of dairy, including a 3D movie theater.

All that, and Fair Oaks Farms was still using only about half of the five million pounds of cow manure it vacuumed up from its barn floors on a daily basis. It burned off the excess methane, wasted energy sacrificed to the sky.

But not anymore.

The farm is now turning the extra manure into fuel for its delivery trucks, powering 42 tractor-trailers that make daily runs to raw milk processing plants in Indiana, Kentucky and Tennessee. Officials…

View original post 226 more words

Advertisements

Trends in Food Waste Management

Food waste is an untapped energy source that mostly ends up rotting in landfills, thereby releasing greenhouse gases into the atmosphere. Food waste is difficult to treat or recycle since it contains high levels of sodium salt and moisture, and is mixed with other waste during collection. Major generators of food wastes include hotels, restaurants, supermarkets, residential blocks, cafeterias, airline caterers, food processing industries, etc.

In United States, food waste is the third largest waste stream after paper and yard waste. Around 12.7 percent of the total municipal solid waste (MSW) generated in the year 2008 was food scraps that amounted to about 32 million tons. According to EPA, about 31 million tons of food waste was thrown away into landfills or incinerators in 2008. As far as United Kingdom is concerned, households throw away 8.3 million tons of food each year. These statistics are an indication of tremendous amount of food waste generated all over the world.

The proportion of food waste in municipal waste stream is gradually increasing and hence a proper food waste management strategy needs to be devised to ensure its eco-friendly and sustainable disposal. Food waste can be recycled via:

  • In-vessel composting (IVC): A treatment that breaks down biodegradable waste by naturally occurring micro-organisms with oxygen, in an enclosed vessel or tunnel;
  • Anaerobic digestion (AD): A treatment that breaks down biodegradable waste in the absence of oxygen, producing a renewable energy (biogas) that can be used to generate electricity and heat.

Currently, only about 3 percent of food waste is recycled throughout U.S., mainly through composting. Composting provides an alternative to landfill disposal of food waste, however it requires large areas of land, produces volatile organic compounds and consumes energy. Consequently, there is an urgent need to explore better recycling alternatives. Anaerobic digestion has been successfully used in several European and Asian countries to stabilize food wastes, and to provide beneficial end-products. Sweden, Austria, Denmark, Germany and England have led the way in developing new advanced biogas technologies and setting up new projects for conversion of food waste into energy.

Of the different types of organic wastes available, food waste holds the highest potential in terms of economic exploitation as it contains high amount of carbon and can be efficiently converted into biogas and organic fertilizer. Food waste can either be used as a single substrate in a biogas plant, or can be co-digested with organic wastes like cow manure, poultry litter, sewage, crop residues, abattoir wastes, etc.

Enhanced by Zemanta

Trends in Waste-to-Energy Industry

NEW DELHI, INDIA - FEBRUARY 18: Indian workers...
Image by Getty Images via @daylife
NEW DELHI, INDIA - FEBRUARY 18: An  Indian wor...
Image by Getty Images via @daylife

Around 130 million tonnes of municipal solid waste (MSW) are combusted annually in over 600 waste-to-energy (WTE) facilities globally that produce electricity and steam for district heating and recovered metals for recycling. Since 1995, the global WTE industry increased by more than 16 million tonnes of MSW. Incineration, with energy recovery, is the most common waste-to-energy method employed worldwide. Over the last five years, waste incineration in Europe has generated between an average of 4% to 8% of their countries’ electricity and between an average of 10% to 15% of the continent’s domestic heat.

Currently, the European nations are recognized as global leaders of the SWM and WTE movement. They are followed behind by the Asia Pacific region and North America respectively. In 2007 there are more than 600 WTE plants in 35 different countries, including large countries such as China and small ones such as Bermuda. Some of the newest plants are located in Asia.

The United States processes 14 percent of its trash in WTE plants. Denmark, on the other hand, processes more than any other country – 54 percent of its waste materials. As at the end of 2008, Europe had more than 475 WTE plants across its regions – more than any other continent in the world – that processes an average of 59 million tonnes of waste per annum. In the same year, the European WTE industry as a whole had generated revenues of approximately US$4.5bn. Legislative shifts by European governments have seen considerable progress made in the region’s WTE industry as well as in the implementation of advanced technology and innovative recycling solutions. The most important piece of WTE legislation pertaining to the region has been the European Union’s Landfill Directive, which was officially implemented in 2001 which has resulted in the planning and commissioning of an increasing number of WTE plants over the past five years.

Enhanced by Zemanta

Rationale for Aluminium Recycling

Shredded aluminium beverage cans.
Image via Wikipedia

Aluminium is used extensively in aircraft, building construction, electrical transmission and consumer durables such as fridges, cooking utensils and air conditioners as well as in food processing equipment and cans. Infact, the use of aluminum exceeds that of any other metal except iron. Aluminium is the second most widely used metal whereas the aluminum can is the most recycled consumer product in the world. Aluminium exposed to fires at dumps can be a serious environmental problem in the form of poisonous gases and mosquito breeding. Recycled aluminium can be utilized for almost all applications, and can preserve raw materials and reduce toxic emissions, apart from significant energy conservation.

The demand for aluminium products is growing steadily because of their positive contribution to modern living. Aluminium finds extensive use in air, road and sea transport; food and medicine; packaging; construction; electronics and electrical power transmission. Aluminum has a high market value and continues to provide an economic incentive to recycle it. The excellent recyclability of aluminium, together with its high scrap value and the low energy needs during recycling make aluminium lightweight solutions highly desirable.

The contribution of the recycled metal to the global output of aluminium products has increased from 17 percent in 1960 to 34 percent today, and expected to rise to almost 40 percent by 2020. Global recycling rates are high, with approximately 90 per cent of the metal used for transport and construction applications recovered, and over 60 per cent of used beverage cans are collected.

Aluminium does not degrade during the recycling process, since its atomic structure is not altered during melting. Aluminium recycling is both economically and environmentally effective, as it requires a lot less energy to recycle than it does to mine, extract and smelt aluminium ore.  Recycled aluminium requires only 5% of the energy used to make primary aluminium, and can have the same properties as the parent metal. However, in the course of multiple recycling, more and more alloying elements are introduced into the metal cycle. This effect is put to good use in the production of casting alloys, which generally need these elements to attain the desired alloy properties.

The industry has a long tradition of collecting and recycling used aluminium products. Over the years, USA and European countries have developed robust separate collection systems for aluminium packaging with a good degree of success. Recycling aluminium reduces the need for raw materials and reduces the use of valuable energy resources. Recycled aluminium is made into aircraft, automobiles, bicycles, boats, computers, cookware, gutters, siding, wire and cans.

Enhanced by Zemanta