What Waste Means

Recycling seems to be top of the list when it comes to priorities and possible solutions that could impose themselves over waste. Recycling involves the transformation and reuse of already used material – be it raw material or not. But what if recycling would be applied in the reuse of already used information? What if some – by thinking recycling-wise – would try to build their kingdom on already thrown away data?

Information Intelligence Blog

…and Possible Solutions

What is waste nowadays? Well, waste is not simply rubbish, that’s for sure. Waste is one of the hot issues of the day, whether we are talking about household waste and the recycling of it, whether we talk about nuclear waste and the risky consequences of not being handled with very special care, or whether we are dealing with economic waste and the reduction of it, especially in the context of current economic crisis.

Recycling seems to be top of the list when it comes to priorities and possible solutions that could impose themselves over waste. Recycling involves the transformation and reuse of already used material – be it raw material or not. But what if recycling would be applied in the reuse of already used information? What if some – by thinking recycling-wise – would try to build their kingdom on already thrown away data?

If…

View original post 554 more words

Advertisements

Biogas Bus

Rivas Design

It’s not big news that buses in Sweden uses biogas as fuel. But in the same project as Taxi Stockholm, I was hired to do a bus-version. Still to motivate society in a charming way to think again, for a better enviroment. (OBS. Haven’t had feedback on this one yet!)

View original post

Organic Waste in South Africa

Southeast Michigan Waste

With waste to landfill becoming an ever critical concern, the Institute of Waste Management of Southern Africa (IWMSA) calls to attention the necessity for managing all our waste streams, especially that of organic waste.

Anything from 35% to 40% of all waste that is sent to landfill is organic; that is, of plant or animal origin, and able to be broken down by other living organisms. “Something that is not often stressed, is that despite the fact that waste may be organic, once it reaches a landfill and decomposes under anaerobic conditions (where oxygen is not present), it is responsible for producing quantities of methane gas as well as releasing potentially hazardous chemicals into the landfill’s leachate, and thence into the groundwater,” says Stan Jewaskiewitz, president of the IWMSA.

Landfills have limited lifespans

“We may think that our biodegradable waste is fairly harmless, but this is a misconception and needs…

View original post 263 more words

Waste into Energy Initiative in Guyana

Repeating Islands

Guyana: Turning Waste into Energy

The tourist brochure shows pictures of lovely white sandy beaches, tall coconut trees and rolling mountains. Welcome to the Caribbean.But the picture has been changing in recent years as Caribbean countries grapple with millions of ton of household waste that sometimes scar the landscape.

Now there is a glimmer of hope. A United Kingdom-based Waste to Energy firm is partnering with some Caribbean countries to set up plants that will convert garbage into electricity and potable water, and in the process transform the region from its dependence on fossil fuel.

“The Caribbean is a wonderful area but what you haven’t got is the land or the resources,” Tony Fiddy, the President of the Waste to Energy Division and the Regional Vice President for Europe and Africa of Naanovo Energy Inc., told IPS. “If you want to put solar up, you need big solar fields…

View original post 359 more words

Waste-to-Energy Initiative in Vietnam

Vietnam Environment

Tu Ngoc An, board chairman of Kien Giang Composite Co. (KGC), has paid a visit to Australia to finalize the whole plan of building a plant generating power from garbage in HCMC with Australian partner Trisun International Development Co.

View original post 662 more words

Hydrogen from Organic Waste

Clean Energy Diary

It is clear substituting fossil fuels with Hydrogen is not only efficient but also sustainable in the long run. While efforts are on to produce Hydrogen at a cost in par with Gasoline or less using various methods, sustainability is equally important. We have necessary technology to convert piped natural gas to Hydrogen to generate electricity on site to power our homes and fuel our cars using Fuelcell.But this will not be a sustainable solution because we can no longer depend on piped natural gas because its availability is limited; and it is also a potent greenhouse gas. The biogas or land fill gas has the same composition as that of a natural gas except the Methane content is lower than piped natural gas. The natural gas is produced by Nature and comes out along with number of impurities such as Carbon dioxide, moisture and Hydrogen sulfide etc.The impure…

View original post 687 more words

Trends in Food Waste Management

Food waste is an untapped energy source that mostly ends up rotting in landfills, thereby releasing greenhouse gases into the atmosphere. Food waste is difficult to treat or recycle since it contains high levels of sodium salt and moisture, and is mixed with other waste during collection. Major generators of food wastes include hotels, restaurants, supermarkets, residential blocks, cafeterias, airline caterers, food processing industries, etc.

In United States, food waste is the third largest waste stream after paper and yard waste. Around 12.7 percent of the total municipal solid waste (MSW) generated in the year 2008 was food scraps that amounted to about 32 million tons. According to EPA, about 31 million tons of food waste was thrown away into landfills or incinerators in 2008. As far as United Kingdom is concerned, households throw away 8.3 million tons of food each year. These statistics are an indication of tremendous amount of food waste generated all over the world.

The proportion of food waste in municipal waste stream is gradually increasing and hence a proper food waste management strategy needs to be devised to ensure its eco-friendly and sustainable disposal. Food waste can be recycled via:

  • In-vessel composting (IVC): A treatment that breaks down biodegradable waste by naturally occurring micro-organisms with oxygen, in an enclosed vessel or tunnel;
  • Anaerobic digestion (AD): A treatment that breaks down biodegradable waste in the absence of oxygen, producing a renewable energy (biogas) that can be used to generate electricity and heat.

Currently, only about 3 percent of food waste is recycled throughout U.S., mainly through composting. Composting provides an alternative to landfill disposal of food waste, however it requires large areas of land, produces volatile organic compounds and consumes energy. Consequently, there is an urgent need to explore better recycling alternatives. Anaerobic digestion has been successfully used in several European and Asian countries to stabilize food wastes, and to provide beneficial end-products. Sweden, Austria, Denmark, Germany and England have led the way in developing new advanced biogas technologies and setting up new projects for conversion of food waste into energy.

Of the different types of organic wastes available, food waste holds the highest potential in terms of economic exploitation as it contains high amount of carbon and can be efficiently converted into biogas and organic fertilizer. Food waste can either be used as a single substrate in a biogas plant, or can be co-digested with organic wastes like cow manure, poultry litter, sewage, crop residues, abattoir wastes, etc.

Enhanced by Zemanta

Vermicomposting

English: Freshly harvested worm castings Categ...

Vermicomposting is a type of composting in which certain species of earthworms are used to enhance the process of organic waste conversion and produce a better end-product. Vermicomposting is a mesophilic process utilizing microorganisms and earthworms. Earthworms feeds the organic waste materials and passes it through their digestive system and gives out in a granular form (cocoons) which is known as vermicompost. Like regular compost, vermicompost also benefits the environment by reducing the need for chemical fertilizers and decreasing the amount of waste going to landfills/dumpsites.

Vermicompost is primarily earthworm excrement, called castings, which can improve biological, chemical, and physical properties of the soil. The chemical secretions in the earthworm’s digestive tract help break down soil and organic matter, so the castings contain more nutrients that are immediately available to plants.

Earthworms consume various organic wastes and reduce the volume by 40–60 percent. Each earthworm weighs about 0.5 to 0.6 gram, eats waste equivalent to its body weight and produces cast equivalent to about 50 percent of the waste it consumes in a day. The moisture content of castings ranges between 32 and 66 percent and the pH is around 7.0. The worm castings contain higher percentage (almost twice) of both macro and micronutrients than the garden compost. About 2-3 kg of earthworms is required for 1000 kg of biomass, whereas about 1100 number earthworms are required for 1 m2 area.

There are nearly 3600 types of earthworms and they are mainly divided into two types: (1) burrowing; and (2) non-burrowing. Red earthworm species like Eisenia foetida and

Compost

 are most efficient in compost making. The non-burrowing earthworms eat 10 percent soil and 90 percent organic waste materials; these convert the organic waste into vermicompost faster than the burrowing earthworms. They can tolerate temperatures ranging from 0 to 40°C but the regeneration capacity is more at 25 to 30°C and 40–45% moisture level in the pile. The burrowing types of earthworms come onto the soil surface only at night. These make holes in the soil up to a depth of 3.5 m and produce 5.6 kg casts by ingesting 90 percent soil and 10 percent organic waste.

A wide range of agricultural residues, all dry wastes, for example, straw, husk, dry leaves of crops and trees, stalks, vegetable wastes, weeds etc can be converted into vermicompost. In addition, animal manures, dairy and poultry wastes, food industry wastes, municipal solid wastes, biogas sludge and bagasse from sugarcane factories also serve as good raw materials for vermicomposting.

Enhanced by Zemanta

Trends in Waste-to-Energy Industry

NEW DELHI, INDIA - FEBRUARY 18: Indian workers...
Image by Getty Images via @daylife
NEW DELHI, INDIA - FEBRUARY 18: An  Indian wor...
Image by Getty Images via @daylife

Around 130 million tonnes of municipal solid waste (MSW) are combusted annually in over 600 waste-to-energy (WTE) facilities globally that produce electricity and steam for district heating and recovered metals for recycling. Since 1995, the global WTE industry increased by more than 16 million tonnes of MSW. Incineration, with energy recovery, is the most common waste-to-energy method employed worldwide. Over the last five years, waste incineration in Europe has generated between an average of 4% to 8% of their countries’ electricity and between an average of 10% to 15% of the continent’s domestic heat.

Currently, the European nations are recognized as global leaders of the SWM and WTE movement. They are followed behind by the Asia Pacific region and North America respectively. In 2007 there are more than 600 WTE plants in 35 different countries, including large countries such as China and small ones such as Bermuda. Some of the newest plants are located in Asia.

The United States processes 14 percent of its trash in WTE plants. Denmark, on the other hand, processes more than any other country – 54 percent of its waste materials. As at the end of 2008, Europe had more than 475 WTE plants across its regions – more than any other continent in the world – that processes an average of 59 million tonnes of waste per annum. In the same year, the European WTE industry as a whole had generated revenues of approximately US$4.5bn. Legislative shifts by European governments have seen considerable progress made in the region’s WTE industry as well as in the implementation of advanced technology and innovative recycling solutions. The most important piece of WTE legislation pertaining to the region has been the European Union’s Landfill Directive, which was officially implemented in 2001 which has resulted in the planning and commissioning of an increasing number of WTE plants over the past five years.

Enhanced by Zemanta

Biochar Sequestration

Biochar sequestration is considered carbon negative as it results in a net decrease in atmospheric carbon dioxide over centuries or millennia time scales. Instead of allowing the organic matter to decompose and emit CO2, pyrolysis can be used to sequester the carbon and remove circulating CO2 from the atmosphere and store it in virtually permanent soil carbon pools, making it a carbon-negative process. According to Johannes Lehmann of Cornell University, biochar sequestration could make a big difference in the fossil fuel emissions worldwide and act as a major player in the global carbon market with its robust, clean and simple production technology.

The use of pyrolysis also provides an opportunity for the processing of agricultural residues, wood wastes and municipal solid waste into useful clean energy. Although some organic matter is necessary for agricultural soil to maintain its productivity, much of the agricultural waste can be turned directly into biochar, bio-oil, and syngas. Pyrolysis transforms organic material such as agricultural residues and wood chips into three main components: syngas, bio-oil and biochar (which contain about 60 per cent of the carbon contained in the biomass.