Biofuels and energy production dominate Europe’s landscape

Barber's Meaty Issues

After a week in England and a month touring central Europe by road, rail and river, I have gained a superficial impression of the predominant types of agricultural activity in the region. I am talking about Austria, Bavaria, Rhineland and some of the old Communist countries – East Germany, Poland, Slovakia and the CzechRepublic.

View original post 723 more words

Hydrogen’s Energy Potential

The Pipeline

Questions swirl around the idea of bioethanol as an alternative to gasoline for powering transport, but researchers from the University of Birmingham have started creating clean hydrogen from food waste, an idea that could revolutionise the bioenergy industry.

A look at Brazil — the world’s most intensive user of bioethanol — finds that mass-producing bioethanol from sugarcane is not as sustainable in the long-term as would be hoped. Bioethanol generates carbon dioxide as well as agricultural waste.

However, creating clean hydrogen from food waste not only uses up that waste, but provides a fuel that is emissions free and can be generated sustainably.

“Fuel cells need clean energy to run them. If you provide bacteria with a supply of sugary waste from, for example, chocolate production, the bacteria can produce hydrogen,” said Professor Lynne Macaskie, Professor of Applied Microbiology at the University of Birmingham, who presented the research at a collaborative bioenergy…

View original post 92 more words

About Data Centers and Biogas

Gigaom

At first glance biogas — gas that is produced by the breakdown of organic matter — and data centers that are powering the world’s always-on websites don’t seem like a clear fit. The first is an industry in the U.S. in its infancy, and the second is undergoing a rapidly exploding construction boom.

But an increasing number of Internet companies are experimenting with turning to biogas as an emerging source to power part of their data centers. Why? Well, for quite a few reasons. Here’s what you need to know about this emerging phenomenon of biogas and data centers:

1). Where does biogas come from?: Biogas is created when organic matter is broken down in an anaerobic digester and the gas is captured. An anaerobic digestor is a closed tank that doesn’t let any oxygen in, and enables anaerobic bacteria to digest the organic material at a nice, warm…

View original post 778 more words

Rationale for Decentralized Production of Biogas and Bioethanol

Clean Energy Diary

We live in a technological world where fuel and power play a critical role in shaping our lives and building our nations. The growth of a nation is measured in terms of fuel and power usage; yet there are many challenges and uncertainties in fuel supply and power generation technologies in recent past due to environmental implications. Fossil fuels accelerated our industrial growth and the civilization . But diminishing supply of oil and gas, global warming, nuclear disasters, social upheavals in the Arabian countries, financial problems, and high cost of renewable energy have created an uncertainty in the energy supply of the future. The future cost of energy is likely to increase many folds yet nobody knows for certain what will be the costs of energy for the next decade or what will be the fuel for our cars.  Renewable energy sources like solar and wind seem to be…

View original post 503 more words

Hydrogen from Organic Waste

Clean Energy Diary

It is clear substituting fossil fuels with Hydrogen is not only efficient but also sustainable in the long run. While efforts are on to produce Hydrogen at a cost in par with Gasoline or less using various methods, sustainability is equally important. We have necessary technology to convert piped natural gas to Hydrogen to generate electricity on site to power our homes and fuel our cars using Fuelcell.But this will not be a sustainable solution because we can no longer depend on piped natural gas because its availability is limited; and it is also a potent greenhouse gas. The biogas or land fill gas has the same composition as that of a natural gas except the Methane content is lower than piped natural gas. The natural gas is produced by Nature and comes out along with number of impurities such as Carbon dioxide, moisture and Hydrogen sulfide etc.The impure…

View original post 687 more words

Denver zoo test-drives elephant-poop-powered vehicle

Grist

The Denver Zoo has to deal with a lot of waste. A good deal of that waste comes from visitors, but the zoo also produces hundreds of thousands of pounds of animal poo each year. Now, zoo engineers have found a positive use for it: They rigged up a poo-powered tuk-tuk. (A tuk-tuk is a motorized rickshaw.)

“We want to show people that we’re not crazy for wanting to take elephant poop and turn it into energy,” one engineer told the Denver Post.

View original post 157 more words

Biomass Energy Sector in India

Panchabuta-Renewable Energy & Cleantech in India

According to reports, Biomass power producers are in a quandary with input costs, operations and maintenance costs growing and tariff structure remaining stagnant, thereby making many projects across the country financially unviable.

The representative body of biomass producers, the Indian Biomass Power Association has written a letter to the Union Minister for New and Renewable Energy, Dr Farooq Abdullah, seeking his attention and intervention in addressing their concerns.

Nearly half of the installed capacity of 1,100 MW across several States is lying idle and there is demand-supply mismatch, according to Mr D. Radhakrishna, Secretary-General of IBPA.

Representatives of the association and biomass producers told Business Line that the situation needs to be addressed immediately as the recent requests made to the Central Electricity Regulatory Commission (CERC) have not been successful.

The producers use a wide range of agriculture waste such as rice and coconut husk and forest waste as…

View original post 240 more words

Thailand’s Biomass Energy Scenario

© Guerito 2005

Thailand’s annual energy consumption has risen sharply during the past decade and will continue its upward trend in the years to come. While energy demand has risen sharply, domestic sources of supply are limited, thus forcing a significant reliance on imports. To face this increasing demand, Thailand needs to produce more energy from its own renewable resources, particularly biomass wastes derived from agro-industry, such as bagasse, rice husk, wood chips, livestock and municipal wastes.

In 2005, total installed power capacity in Thailand was 26,430 MW. Renewable energy accounted for about 2 percent of the total installed capacity. In 2007, Thailand had about 777 MW of electricity from renewable energy that was sold to the grid. Several studies have projected that biomass wastes can cover up to 15 % of the energy demand in Thailand (Thailand-Danish Country Programme for Environmental Assistance 1998-2001, Ministry of Environment and Energy, 2000). These estimations are primarily made from biomass waste from the extraction part of agricultural activities, and for large scale agricultural processing of crops etc. – as for instance saw and palm oil mills – and do not include biomass wastes from SMEs in Thailand. Thus, the energy potential of biomass waste can be much larger if these resources are included. The major biomass resources in Thailand include the following:

  • Woody biomass residues from forest plantations
  • Agricultural residues (rice husk, bagasse, corn cobs, etc.)
  • Wood residues from wood and furniture industries    (bark, sawdust, etc.)
  • Biomass for ethanol production (cassava, sugar cane, etc.)
  • Biomass for biodiesel production (palm oil, jatropha oil, etc.)
  • Industrial wastewater from agro-industry
  • Livestock manure
  • Municipal solid wastes and sewage

Thailand’s vast biomass potential has been partially exploited through the use of traditional as well as more advanced conversion technologies for biogas, power generation, and biofuels. Rice, sugar, palm oil, and wood-related industries are the major potential biomass energy sources. The country has a fairly large biomass resource base of about 60 million tons generated each year that could be utilized for energy purposes, such as rice, sugarcane, rubber sheets, palm oil and cassava. Biomass has been a primary source of energy for many years, used for domestic heating and industrial cogeneration. For example, paddy husks are burned to produce steam for turbine operation in rice mills; bagasse and palm residues are used to produce steam and electricity for on-site manufacturing process; and rubber wood chips are burned to produce hot air for rubber wood seasoning.

In addition to biomass residues, wastewater containing organic matters from livestock farms and industries has increasingly been used as a potential source of biomass energy. Thailand’s primary biogas sources are pig farms and residues from food processing. The production potential of biogas from industrial wastewater from palm oil industries, tapioca starch industries, food processing industries, and slaughter industries is also significant. The energy-recovery and environmental benefits that the KWTE waste to energy project has already delivered is attracting keen interest from a wide range of food processing industries around the world.

Enhanced by Zemanta

BioMethane

English: Biogas pump station for vehicles

The typical composition of raw biogas does not meet the minimum CNG fuel specifications. In particular, the COand sulfur content in raw biogas is too high for it to be used as vehicle fuel without additional processing. Biogas that has been upgraded to biomethane by removing the H2S, moisture, and COcan be used as a vehicular fuel. Biomethane is less corrosive than biogas, apart from being more valuable as a fuel.

Since production of such fuel typically exceeds immediate on-site demand, the biomethane must be stored for future use, usually either as compressed biomethane (CBM) or liquefied biomethane (LBM). Biomethane can be liquefied, creating a product known as liquefied biomethane (LBM). Two of the main advantages of LBM are that it can be transported relatively easily and it can be dispensed to either LNG vehicles or CNG vehicles. Liquid biomethane is transported in the same manner as LNG, that is, via insulated tanker trucks designed for transportation of cryogenic liquids.

Biomethane can be stored as CBM to save space. The gas is stored in steel cylinders such as those typically used for storage of other commercial gases. Storage facilities must be adequately fitted with safety devices such as rupture disks and pressure relief valves. The cost of compressing gas to high pressures between 2,000 and 5,000 psi is much greater than the cost of compressing gas for medium-pressure storage. Because of these high costs, the biogas is typically upgraded to biomethane prior to compression.

Enhanced by Zemanta